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Fast information transfer in neuronal systems rests on series of action potentials, the spike trains, conducted along
axons. Methods that compare spike trains are crucial for characterizing different neuronal coding schemes. In this
paper we review recent results on the notion of spiking randomness and discuss its properties with respect to the rate
and temporal coding schemes. This method is compared with other widely used characteristics of spiking activity,
namely the variability of interspike intervals and it is shown that randomness and variability provide two distinct views.
We demonstrate, that estimation of spiking randomness from simulated and experimental data is capable of capturing
characteristics that would otherwise be difficult to obtain with conventional methods.
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Introduction

Neurons communicate via chemical and electrical
synapses, in a process known as synaptic transmission.
The crucial event that triggers synaptic transmission is the
action potential (or spike), a pulse of electrical discharge that
travels along the axon excitable membrane. The shapes and
durations of individual spikes generated by a given neuron
are very similar, therefore it is generally assumed that the
form of the action potential is not important in information
transmission. The series of action potentials in time (spike
trains) can be recorded by placing an electrode close to or
inside the soma or axon of a neuron. Since individual spikes
in a spike train are usually well separated, the whole spike
train can be described as a series of all-or-none point events in
time (Gerstner and Kistler, 2002). The lengths of interspike
intervals (ISIs) between two successive spikes in a spike train
often vary, apparently randomly, both within and across trials
(Gerstner and Kistler, 2002; Shadlen and Newsome, 1998;
Stein, Gossen, and Jones, 2005). In order to describe and
analyze neuronal firing, statistical methods and methods of
probability theory and stochastic point processes have been
widely applied (Cox and Lewis, 1966; Kass, Ventura, and
Brown, 2005; Moore, Perkel, and Segundo, 1966; Tuckwell,
1988).

One of the most fundamental questions in neuroscience has
been the problem of neuronal coding, i.e., the way informa-
tion about stimuli is represented in spike trains (Perkel and
Bullock, 1968; Softky, 1995; Strong et al., 1998). To answer
this question, methods to compare different spike trains are
needed first (Bhumbra, Inyushkin, and Dyball, 2004; Buracas
and Albright, 1999; Nemenman, Bialek, and de Ruyter van
Steveninck, 2004; Paninski, 2003; Rieke et al., 1997; Victor
and Purpura, 1997).
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In the rate coding scheme information sent along the axon
is encoded in the number of spikes per observation time win-
dow (the firing rate) (Adrian, 1928). In most sensory systems,
the firing rate increases, generally non-linearly, with increas-
ing stimulus intensity (Kandel, Schwartz, and Jessel, 1991).
Any information possibly encoded in the temporal structure
of the spike train is ignored. Consequently, rate coding is
inefficient but highly robust with respect to the ISI ’noise’
(Stein, Gossen, and Jones, 2005). The question whether the
temporal structure of ISIs is due to unavoidable fluctuations in
spike generation or whether it represents an informative part
of the neuronal signal is not yet fully resolved (Gerstner and
Kistler, 2002; Shadlen and Newsome, 1994; Stein, Gossen,
and Jones, 2005) and leads to the idea of temporal coding.

Temporal codes employ those features of the spiking ac-
tivity, that cannot be described by the firing rate. For exam-
ple, time to first spike after the stimulus onset, characteris-
tics based on the second and higher statistical moments of
the ISI probability distribution, or precisely timed groups of
spikes (temporal patterns) are candidates for temporal codes
(Buracas and Albright, 1999; Gerstner and Kistler, 2002;
Rieke et al., 1997). Possibility of information transmission by
changes in ISIs serial correlation has been reported in cray-
fish interneurons (Sugano and Tsukada, 1978; Wiersma and
Adams, 1950). For a classic overview of temporal coding see
Perkel and Bullock (1968), for a more recent discussion see
Abeles (1994); Rieke et al. (1997); Shadlen and Newsome
(1994); Stein, Gossen, and Jones (2005); Theunissen and
Miller (1995). It is worth denoting, that both rate and tempo-
ral coding schemes generally depend on the length of the ob-
servation window and therefore their precise separation may
not be possible in general (Gerstner and Kistler, 2002). How-
ever, if the firing is stationary the rate does not depend on the
observation window length and thus both coding schemes are
well separated.

While the description of neuronal activity from the rate cod-
ing point of view is relatively straightforward, the temporal
coding allows infinite number of possibilities. Spike trains
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which are equivalent from the rate coding perspective may
turn out to be different under various measures of their tem-
poral structure. the purpose of this review is to describe a
measure of randomness of the neuronal activity. We discuss
properties of this measure with respect to rate and temporal
coding schemes and its application to experimental data. We
show, that spiking randomness is capable of capturing charac-
teristics that would otherwise be difficult to obtain with con-
ventional methods. The notion of randomness is very dif-
ferent from that of variability, even though these terms are
sometimes interchanged. Furthermore, since the definition
of randomness is based on the concept of entropy (Shannon
and Weaver, 1998), relation with other information-theoretic
quantities can be established.

Probabilistic description of neuronal activity

Spike train consists of times of spike occurences
�0; �1; : : : ; �n. For the purpose of further analysis it is advan-
tageous to describe such spike train equivalently by a set of n
ISIs ti D �i � �i�1, i D 1 : : : n. Arguably the most important
characteristics calculated from ti is the estimate Nt of the mean
ISI,

Nt D
1

n

nX
iD1

ti : (1)

Since
Pn
iD1 ti D �n � �0, the average Nt is computed with-

out recourse to particular interval lengths and thus presents
the lowest level of ISI analysis (Moore, Perkel, and Segundo,
1966). Other common parameters, coefficient of variation and
standard deviation of ISIs, require all measurements, ti , and
both rely on the estimate s2 of the ISI variance,

s2 D
1

n � 1

nX
iD1

.ti � Nt /
2: (2)

However, Nt and s2 are meaningful only if the spiking activity
is stationary, i.e., if the major probability characteristics of the
firing are invariant in time (Cox and Lewis, 1966; Landolt
and Correia, 1978). Stationary neuronal firing is typically ob-
served in the spontaneous activity, or under constant stimulus
conditions (Gerstner and Kistler, 2002; Moore, Perkel, and
Segundo, 1966; Tuckwell, 1988).

The probabilistic description of the spiking results from the
fact, that the positions of spikes cannot be predicted deter-
ministically, only the probability that a spike occurs can be
given (Gerstner and Kistler, 2002). By far the most common
probabilistic descriptor is the ISI probability density function
f .t/, where f .t/ dt is the probability that spike occurs in an
interval Œt; tCdt/ (Moore, Perkel, and Segundo, 1966). Prob-
ability density function is usually estimated from the data by
means of histograms.

There are several functions completely equivalent to f .t/,
that characterize the spiking activity (Cox and Lewis, 1966;

Landolt and Correia, 1978). The cumulative distribution func-
tion F.t/,

F.t/ D

tZ
0

f .z/ dz; (3)

gives the probability that the ISI will have a length not greater
than t . F.t/ is easily estimated from data by means of empir-
ical cumulative distribution function (Cox and Lewis, 1966;
Duchamp-Viret et al., 2005), which serves as a basis for some
differential entropy estimators (see Appendix B). The final
probability descriptor we mention is the hazard rate r.t/,

r.t/ D
f .t/

1 � F.t/
: (4)

The hazard rate determines the probability r.t/ dt of spike oc-
curring in a time interval Œt; t C dt/ under the condition that
there was no firing in Œ0; t/. The hazard rate characterizes the
"imminency" of spiking (Tuckwell, 1988) and it has been tra-
ditionally employed in neuronal data analysis (Adrian, Gold-
berg, and Smith, 1964; Moore, Perkel, and Segundo, 1966;
Poggio and Viernstein, 1964) to provide a different point of
view from f .t/ and F.t/.

The mentioned decriptors, f .t/, F.T / and r.t/, do not de-
pend on the ordering of ISIs, i.e., they completely describe
the firing when ISIs are mutually independent realizations of
a positive random variable T , with mean ISI E.T / and vari-
ance Var.T / estimated by formulas (1) and (2). Such firing
is called renewal process of ISIs (Cox and Lewis, 1966; Ger-
stner and Kistler, 2002). The plausibility of renewal mod-
els under steady-state stimulus conditions is supported by ob-
servation, that after a spike is emitted, the membrane poten-
tial of the cell returns to its (approximately) constant resting
value (Gerstner and Kistler, 2002; Landolt and Correia, 1978;
Stein, 1967; Tuckwell, 1988). Sometimes, however, there
might be a dependency structure between the observed ISIs
(Chacron, Longtin, and Maler, 2001; Lansky and Rodriguez,
1999; Lindner, 2004; Longtin and Racicot, 1997; Ratnam
and Nelson, 2000; Sakai, Funahashi, and Shinomoto, 1999).
The dependence may arise, for example, due to incomplete
resetting of the membrane potential after the spike is emitted,
which is experimentally observed especially in the distal parts
of the neuron (Abeles, 1982). Such type of neuronal firing
is not a renewal process, although the ISI probability distri-
bution is invariant in time (due to the stationarity of spiking).
Consequently, the mean ISI is constant in time and therefore
E.T / carries all the information from the rate coding point of
view, since E.T / is inversely proportional to the (mean) fir-
ing rate (Gerstner and Kistler, 2002; Moore, Perkel, and Se-
gundo, 1966). Basic observation reveals, however, that even
if the firing rates are the same, the resulting spike trains can
have very different appearances (Fig. 1). See Appendix C for
description of models employed in the figure.
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a.   Regular,  CV=0,  η=-∞

b.   Exponential,  CV=1,  η=1

c.   Bimodal (Bernoulli),  CV=1,  η=-∞

d.   Pareto,  CV=1,  η=0

e.   Correlated,  CV=1,  η=0.26

f.   Gamma,  CV=1.1,  η=0.01

g.   Mixture of exponentials,  CV=1.1, η=0.8

h.   Bursting (inv. Gauss),  CV=1.73, η=0.8

Figure 1. Examples of different simulated spike trains. Mean in-
terspike interval is E.T / D 1 s in all cases, thus the spike trains
(a–h) are equivalent in the rate coding scheme. Temporal coding
scheme must be used to classify the apparent differences. The inter-
spike interval (ISI) variability (measured by coefficient of variation,
CV ) is not sufficient for (b–e). The ISIs described by the exponential
probability distribution (b) have many different lengths (i.e., they are
’variable’), but the same variability is achieved for a regular spiking
disturbed by appropriately long pauses (c). Activity described by the
Pareto distribution (d) has the same variability (CV D 1), though
it lacks short ISIs. Finally, (e) contains the same individual ISIs as
(b) but ordered in a particular way (Markov chain, first-order serial
correlation % D 0:9). The measure that describes the differences
is randomness, �, defined as the ’choice’ of possible ISIs when re-
constructing the spike train ’spike by spike’. Spike trains (f–h) were
simulated using the same random seed to make the visual compari-
son easier. The differences in randomness between cases (f) and (g)
with equal CV are not as apparent as in (b–e). The same level of
randomness, in (g) and (h), is reached with different variability and
results in different spike trains. Bursting activity (h) is more variable
than the exponential case (a), though its randomness is lower.

Spiking variability

One of the most frequently used characteristics of renewal
neuronal firing is the ISI variability. The variability may be
measured simply using the ISI variance, Var.T /, but variance
depends on the mean ISI. Usually, it is required to characterize
the spike train differences from the temporal coding point of
view, in other words to describe properties which are distinct
from the mean ISI. To achieve this the ISI lengths are rate-
normalized, i.e., individual ISIs are divided by the mean ISI,

� D
T

E.T /
; (5)

so we obtain a new dimensionless random variable � with
mean E.�/ D 1. Variance of � is equal to the coefficient of
variation of the original random variable T , Var.�/ D CV ,
where

CV D

p
Var.T /
E.T /

: (6)

The main advantage of CV as a measure of spiking vari-
ability (compared to variance) is that CV is dimensionless and
its value does not depend on the choice of units of ISIs (e.g.,
seconds or miliseconds) and thus ISI probability distributions
with different means can be compared meaningfully (Softky
and Koch, 1993). Furthermore, the CV of ISIs is related to the
variability coding hypothesis (Perkel and Bullock, 1968). The
coding characterized by CV has been hypothetised to transmit
information about light intensity in adapted cells of the horse-
shoe crab (Ratliff, Hartline, and Lange, 1968). Changes in the
level of bursting activity, characterized by values CV > 1, are
reported to be the proper code for edge detection in certain
units of visual cortex (Burns and Pritchard, 1964) and also in
hippocampal place cells (Fenton, Lansky, and Olypher, 2002).
The variability of ISIs generated by the leaky integrate-and-
fire model (Burkitt, 2006; Gerstner and Kistler, 2002) was
recently a topic for a very extensive discussion initiated by
Softky and Koch (1993).

Nevertheless, E.T / and CV are not sufficient to describe
all possible differences between spike trains (Fig. 1b–e, where
E.T / D 1 s and CV D 1). The spike trains described by the
renewal processes of equal variability may have ISI proba-
bility distributions that differ in higher than second statistical
moments. Additionaly, CV does not account for statistical de-
pendency between ISIs (by definition), and thus spike trains
with the same marginal probability distributions of ISIs have
the same variability.

Instead of employing characteristics based on higher sta-
tistical moments of the probability distributions involved and
serial correlation coefficients of the ISIs we propose to mea-
sure the randomness of the spiking activity. Spiking random-
ness accounts automatically for differences in both marginal
probability distributions and serial dependence of ISIs.

Spiking randomness

The randomness of spiking can be defined as the measure of
’choice’ of different ISI lengths that appear in the spike train
and the measure of ’freedom’ in their serial ordering. Bigger
choice of ISIs and more freedom in their ordering results, in-
tuitively, in greater randomness of spiking. We first overview
the concept of entropy (Shannon and Weaver, 1998), on which
the measure of spiking randomness is based.

For a discrete random variable X with the set of possi-
ble states fx1; x2; : : : ; xng and the corresponding probability
mass function pi D ProbfX D xig, the entropy H.X/ is
defined as (Shannon and Weaver, 1998)

H.X/ D �

nX
iD1

pi lnpi : (7)
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The entropyH.X/ is positive or equal to zero with equality if
only one option is possible (no randomness). Maximum ran-
domness (maximum H.X/) is reached when all pi ’s are the
same. If the logarithm base in formula (7) is 2, H.X/ can be
interpreted as the average length in bits of the shortest descrip-
tion of X (Cover and Thomas, 1991). The entropy is a unique
measure of randomness satisfying a set of intuitive conditions
(Jaynes and Bretthorst, 2003; Shannon and Weaver, 1998),
however, it is applicable to discrete systems only.

The extension of formula (7) for continuous probability dis-
tributions is impossible because the value of H.X/ diverges
(Cover and Thomas, 1991). Therefore, the differential entropy
h.T / of the ISI probability density function f .t/ is defined as

h.T / D �

1Z
0

f .t/ lnf .t/ dt: (8)

Differential entropy h.T / does not have all the properties and
intuitive interpretation of the entropy H.X/. The value of
h.t/ changes with coordinate transforms, e.g., depends on the
time units of ISIs. Probability density function f .t/ has a
physical dimension (it is a derivative of probability with re-
spect to time), therefore h.T / has the dimension of its loga-
rithm, e.g., logarithm of a milisecond. These facts show, that
the differential entropy cannot be used to quantify the ran-
domness of spiking activity. To overcome this problem, a dis-
cretization method has been adopted in literature (Rieke et al.,
1997; Strong et al., 1998) which converts the task back to
formula (7), however, the results depend on the discretization
factor (Chacron, Longtin, and Maler, 2001).

Here we proceed in a different way, avoiding the discretiza-
tion. We want the randomness to characterize the spike train
differences from the temporal coding point of view, in a
similar way to CV . Thus formula (5) is employed to rate-
normalize the ISI lengths and the spiking randomness � is de-
fined as the differential entropy of the random variable�. The
following relation holds (Kostal, Lansky, and Zucca, 2007)

� D h.T / � lnE.T /: (9)

Before discussing the properties of � we mention another ap-
proach to defining randomness. The exponential probability
density function, fexp.t/, is given as

fexp.t/ D � exp.��t/; (10)

where � > 0 is the inverse of its mean, � D 1=E.T /. An im-
portant property of fexp.t/ is, that it achieves maximum dif-
ferential entropy among all ISI probability distributions with
the same mean ISI (Cover and Thomas, 1991). The exponen-
tial model fexp.t/ represents the ’zero point’ on the differen-
tial entropy scale for all ISI probability density functions with
the same means. Kullback-Leibler (KL) distance D.f; fexp/
given by formula (Cover and Thomas, 1991)

D.f; fexp/ D

1Z
0

f .t/ ln
f .t/

fexp.t/
dt (11)

measures the deviation between probability density functions
f .t/ and fexp.t/. Therefore, D.f; fexp/ can be used to quan-
tify the randomness of probability density function f .t/, if
f .t/ has the same mean as fexp.t/ (Kostal and Lansky, 2007).
It can be shown that � is related to D.f; fexp/ by a simple
formula (Kostal, Lansky, and Zucca, 2007)

� D 1 �D.f; fexp/ (12)

and thus both proposed measures of randomness, � and
D.f; fexp/, are equivalent in their properties because their val-
ues differ only in a sign and a constant. Definition (9) can be
naturally extended to account for non-renewal spiking activity
(Kostal and Lansky, 2006a), see Appendix A.

Finally, by employing the hazard rate from formula (4), we
provide an independent justification for maximum random-
ness of the exponential distribution. Intuitively, the most ran-
dom firing makes the time to the first spike (since the last ob-
served spike) most unpredictable. In other words, the proba-
bility of first spike occurring in Œt; t C dt/ must be indepen-
dent on the elapsed time t and consequently the hazard rate
must be constant. (Any dependence of r.t/ on t would lead
to increased predictability of firing due to more probable first
spike occurrence after certain elapsed times.) The only ISI
probability distribution with constant r.t/ is the exponential
distribution defined in equation (10), then r.t/ D 1=�. Even
though the randomness � can be determined from r.t/ (and
not vice versa), we see two main advantages of � over r.t/
as a measure of randomness. First, r.t/ is a function not a
number (contrary to �), and therefore comparison of random-
ness of different ISI distributions by means of r.t/ is difficult
(Kostal and Lansky, 2007). Second, while � in its general
form accounts also for non-renewal spiking activity, r.t/ is
used only in the renewal case (Moore, Perkel, and Segundo,
1966).

Properties of spiking randomness

Here we summarize basic properties of the spiking random-
ness �, and compare it with the properties of variability as
measured by the coefficient of variation CV .

– Due to rate-normalization of the ISI probability distribution,
the randomness � is a dimensionless quantity and does not
depend on coordinate transformations (Kostal, Lansky, and
Zucca, 2007). Consequently � allows to compare different
stationary spiking activities in the same way as CV .

– Maximum spiking randomness is generated only by the re-
newal process with exponential probability distribution of
ISIs (Poisson process, Fig. 1a). Substituting formula (10)
into formula (9) gives � D 1. Any non-renewal spiking ac-
tivity with exponential marginal probability distribution of
ISIs must have � < 1, since less freedom in serial ordering
of ISIs results in smaller randomness (Kostal and Lansky,
2006a).

– Coincidentally, both � D 1 andCV D 1 for exponential dis-
tribution. Many non-exponential probability distributions
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can have CV D 1, but their randomness is always � < 1.
The equality � D 1 completely characterizes the exponen-
tial distribution of ISIs.

– Equally variable spike trains may differ in their random-
ness. However, the same spiking randomness may be
achieved with different spiking variabilities (Fig. 1g and h).
Thus, randomness provides an alternative rather than supe-
rior characteristic of neuronal firing compared to variability
(Kostal, Lansky, and Zucca, 2007).

– CV is limited from below by CV D 0 (regular spiking,
Fig. 1a) but there is no maximum spiking variability. Val-
ues CV > 1 are characteristic of bursting activity (Fig. 1h).
On the other hand, there is no unique minimal randomness
probability distribution, because � D �1 for any discrete
random variable (Fig. 1a and c). However, discrete proba-
bility distributions are not valid models of spiking activity
(ISI ’noise’ is always present), and the fact that �may not be
finite is of little practical consequence (Kostal and Lansky,
2006a).

– Spiking randomness is an information-theoretic measure,
related to entropy and KL distance. The strength of
information-theoretic measures lies in their ability to reveal
non-linear dependencies (Cover and Thomas, 1991; Rieke
et al., 1997; Yamada et al., 1993). Recently, KL distance
has been used in the field of neuronal coding from the clas-
sification theory point of view Johnson et al. (2001) and
as a predictor of purely rate coding models (Johnson and
Glantz, 2004). Renormalized entropy (a special case of
KL distance) has been shown to provide additional informa-
tion over traditional tools in EEG record analysis (Kopitzki,
Warnke, and Timmer, 1998; Quiroga et al., 2000; Thakor
and Tong, 2004).

Results on model spiking activity

Probabilistic models of stationary spiking activity may be
divided in two categories: statistical and biophysical. The sta-
tistical models are described by probability density functions
which are simple enough to manipulate and adequately de-
scribe experimentally observed data but no other connection
with neurophysiological reality is required. The biophysical
models, on the other hand, result from attempts to describe the
behavior of real neurons at different levels of abstraction (Ger-
stner and Kistler, 2002; Tuckwell, 1988). However, mathe-
matical expressions for biophysical models are rarely given in
a closed form and one has to rely on numerical approxima-
tions.

The analysis of several statistical and biophysical renewal
process models was performed in Kostal and Lansky (2006b,
2007); Kostal, Lansky, and Zucca (2007). Here we present
an overview of the main results. The statistical models are
represented by gamma and log-normal ISI probability distri-
butions, both are commonly used for experimental data de-
scription (Duchamp-Viret et al., 2005; Levine, 1991; Mandl,

1992; McKeegan, 2002; Rospars et al., 1994). The in-
verse Gaussian distribution (Chhikara and Folks, 1989) re-
sults from a simple point stochastic neuronal model (perfect
integrator) where the approach of the membrane potential to-
wards the threshold is described by the Wiener process with
a positive drift (Berger et al., 1990; Levine, 1991). The in-
clusion of leakage current into this model results in the more
realistic diffusion leaky IF model (Burkitt, 2006; Tuckwell,
1988) where the membrane potential evolution is described by
the Ornstein-Uhlenbeck process. The parameters of the leaky
IF model determine two firing regimes, depending on the ra-
tio � D S=.��/ of the threshold membrane potential S to
the neuronal input � and membrane time constant � (Burkitt,
2006; Kostal, Lansky, and Zucca, 2007). The sub-threshold
regime is characterized by � > 1, supra-threshold by � < 1.
The gamma, lognormal and inverse Gaussian distributions are
completely characterized by E.T / and CV and therefore it is
possible to calculate unique value of � for each value of CV
(note that � is independent of E.T /). Similar calculation is
possible for the leaky IF model once �; � and S are known
(determining the supra- or sub-threshold regimes) because the
amount of input ’noise’ �2 controls the actual value of CV
(Kostal, Lansky, and Zucca, 2007). The following inference
can be made based on Fig. 2, where the randomness of each
model is plotted against the corresponding variability.

– The randomness-variability curves of the investigated mod-
els are often U-shaped with high randomness values dis-
tributed around CV D 1. The notable exceptions are the
sub-threshold regime of the leaky IF model and the statisti-
cal Pareto model (not included, Kostal and Lansky (2006a)).

– While small variability generally implies low randomness,
high variability in the firing may result in both low as well
as high randomness.

– It is well known that the lognormal, inverse Gaussian and
leaky IF supra-threshold ISI distributions never become ex-
ponential, but in addition their maximum randomness (min-
imal KL distance from the exponential model) is not located
at CV D 1.

– The behavior of the leaky IF model in the supra-threshold
regime is comparable to the perfect integrator (inverse
Gaussian model). In the sub-threshold regime, the effect
of coherence resonance (Lindner, Schimansky-Geier, and
Longtin, 2002) is demonstrated by local decrease of CV for
� � 0:96. However, there is no corresponding local de-
crease in spiking randomness, i.e., the coherence resonance
for certain (high) values of � is observable in CV but not
in �. Though it is known that the degree of coherence res-
onance depends on the measure employed (Lindner et al.,
2004), the apparent disappearance of the effect on the �
scale raises the question of what is the proper measure of
ISI coherence (Kostal, Lansky, and Zucca, 2007).

Several statistical models of non-renewal spiking activity
described by first-order Markov chains (Cox and Lewis, 1966)
were examined in Kostal and Lansky (2006a). Markov struc-
ture in experimental data is reported in literature (Ratnam and



6

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.4  0.6  0.8  1  1.2  1.4  1.6

 1.1 1
R

an
d
o
m

n
es

s,
 η

Variability, CV

mixed exp.

gamma
lognormal
inv. Gauss

leaky IF:  sub-thr, ξ=5
leaky IF:  supra-thr, ξ=0.5

Figure 2. Randomness vs. variability for some widely used renewal
models of neuronal activity. For CV D 1 the gamma distribution
becomes exponential and thus � D 1. The inverse Gaussian and log-
normal models never become exponential their maximum random-
ness (minimal KL distance from the exponential model with the same
mean ISI) is not located at CV D 1. The behavior of leaky IF model
in the supra-threshold case is similar to the behavior of inverse Gaus-
sian and lognormal models. The sub-threshold activity exhibits the
effect of coherence resonance (local decrease of CV for � � 0:96).
The dot shows, that for CV D 1:1 the randomness of the exponential
mixture model is lower than that of any other model considered here.

Nelson, 2000), and even the first-order case makes the exis-
tence of certain (short) sequences of ISIs more probable than
others (basic temporal pattern formation, Kostal and Lansky
(2006a)). Although the examined models were not used in
data analysis previously, the results show that the serial corre-
lation coefficient (Cox and Lewis, 1966) is a weak indicator
of the true ISI serial dependence. For example, the Lawrance
and Lewis model with exponential marginal probability distri-
bution of ISIs (Lawrance and Lewis, 1977) can achieve either
randomness � D 0:97 or � D 0:82 for the same value of first-
order serial correlation % D 0:17. It follows, that randomness
� or mutual information between ISIs (Cover and Thomas,
1991) should be employed when deciding on renewal or non-
renewal character of experimental data. However, estima-
tion of these information-theoretic quantities requires large
amounts of data which are usually not available in experi-
mental recordings. Finally we note, that the maximum or-
der of non-zero serial correlation coefficient does not coincide
with the dimension of the joint probability density function
describing the activity. For example, first-order moving aver-
age process is non-renewal with all second- and higher-order
serial correlations equal to zero. However, joint probability
density function of two adjacent ISIs does not describe such
process, since the Markov property, ProbfTn � tnjTn�1 D
tn�1; : : : ; T1 D t1g D ProbfTn � tnjTn�1 D tn�1g (Cox and
Lewis, 1966), does not hold in this case.

Results on simulated and experimental data

Here we provide an example with practical consequences,
showing that estimates of randomness from two spike trains
may differ significantly although their appearance is very sim-
ilar (Fig. 1f and g) and their histograms are almost identical.

Bursting neuronal activity consists of runs of short ISIs
(bursts) interspersed among comparatively longer ISIs. Burst-
ing is usually characterized by CV > 1 and it is often re-
ported in experimental data analysis. (Bhumbra, Inyushkin,
and Dyball, 2004; Rospars et al., 1994; Duchamp-Viret et al.,
2005). The bursting activity of neuron is usually described by
a mixture of two distributions, one for interburst ISIs and the
other for intraburst ISIs. A common model of bursting activ-
ity is given by a probability density function of the mixture of
two exponential (ME) distributions (Smith and Smith, 1965;
Tuckwell, 1988)

f .t/ D pae�ax C .1 � p/be�bx ; (13)

where p 2 .0; 1/ and a > 0, b > 0, a ¤ b. The param-
eters a; b and p are independent and consequently a whole
range of different randomness values can be achieved for a
fixed mean ISI and CV > 1 (Kostal and Lansky, 2006b).
We compare two simulated spike trains with E.T / D 1 s,
CV D 1:1: the first generated by the gamma model (Fig. 1f)
and the second generated by the ME distribution (Fig. 1g).
The theoretical value of � for the gamma model in this case
is � D 0:99. The parameters in formula (13) were set so,
that � D 0:80 for the ME model. Fig. 2 shows, that the ran-
domness of the ME distribution with variability CV D 1:1 is
the lowest of the considered models with the same CV . The
histograms of ISIs constructed from n D 200 spikes are, how-
ever, hardly distinguishable due to the striking similarity of
spike trains in Fig. 1f and g. The estimated CV values are
(mean˙ standard deviation): OCV D 1:1˙ 0:06 (gamma) and
OCV D 1:104 ˙ 0:05 (ME). The estimates of randomness, O�

according to formula (B-1) (see Appendix B) with 'bias D 0
andm D 14, averaged over several runs give O� D 0:91˙0:05
(gamma) and O� D 0:77 ˙ 0:06 (ME). The error of estima-
tion is acceptable, because even for 200 spikes the Vasicek’s
estimator clearly marks the difference in spiking randomness.
Theoretical probability density functions of the exponential,
gamma and ME models (Fig. 3a) differ for very short ISIs,
however, histograms with wide-enough bins hide this differ-
ence. Visual comparison of hazard rates, however, provides
an independent proof that the spiking randomness of the ME
model is indeed different from both exponential and gamma
model (Fig. 3b). The hazard rate of the gamma model rapidly
approaches the constant value and thus confirms the small de-
viation in randomness from the exponential distribution, con-
trary to the ME distribution which has monotonously decreas-
ing hazard rate. We conclude, that even though conventional
analysis of two spike trains reveals no difference, the spike
trains may still differ in their randomness and the difference is
tractable even with limited amount of data. Values � D 0:99
and � D 0:80 may also characterize visually different spike
trains. This is confirmed by comparing Fig. 1f and h with
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Figure 3. Comparison of the mixture of exponentials (ME) and
gamma models with parameters E.T / D 1 s and CV D 1. Ex-
ponential model with E.T / D 1 s is also shown. Probability den-
sity functions (a) of ME and gamma models are almost identical for
times greater than 0:5 s. However, the calculated spiking randomness
� differs significantly (Fig. 2), which is supported independently by
comparing the hazard rates of ME and gamma models. The gamma
model approaches the constant hazard rate quickly and therefore its
spiking activity is more random than that described by the ME model
with monotonously decreasing hazard rate.

� D 0:8 but different levels of variability. The bursting ac-
tivity described by the inverse Gaussian model contains more
of both longer and shorter ISIs than the less variable gamma
model.

Duchamp-Viret et al. (2005) estimated the randomness
from the spontaneous activity recordings done on olfactory
receptor neurons of freely breathing and tracheotomized rats.
The recordings were obtained under steady-state conditions
and it was shown that in the majority of cases the firing can
be considered renewal. It was demonstrated, that the sponta-
neous activity is less variable but more random in the case of
tracheotomized animals than in those freely breathing. This
effect is further enhanced if � is adjusted for different spik-
ing rates by considering instead the ratio �=E.T /, i.e., the
’amount’ of randomness per time unit (Kostal and Lansky,
2006a).

Concluding remarks

Comparison of neuronal spiking activity under different
conditions plays a key role in resolving the question of neu-
ronal coding. The spiking activity of a neuron is usually not
deterministic, therefore ISI is described by means of probabil-
ity distributions. We proposed an information-theoretic mea-
sure of spiking randomness, �, which can be related to the dif-
ferential entropy or KL distance from the maximum entropy
distribution. Conceptually, the spiking randomness can be
best compared with the more often used ISI variability mea-
sured by the coefficient of variation, CV . However, the prop-
erties of randomness and variability are different. Namely,
small variability generally implies low randomness, but high
variability of firing may not result in high level of random-
ness. Simultaneously, the same level of randomness can be
reached by different values of variability, depending on the
probabilistic model of the spiking.
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Appendix A: Randomness of non-renewal firing

In the stationary, but non-renewal spiking activity, the suc-
cessive ISIs are realizations of identical, statistically depen-
dent random variables fTig and the activity is fully described
by the joint probability density function f .t1; t2; : : : / of ISIs.
For the mean ISI, E.T /, thus holds E.T / D E.Ti / (Cox and
Lewis, 1966). The appropriate generalization of differential
entropy h.T / is given by the differential entropy rate Nh.f /
(Cover and Thomas, 1991)

Nh.f / D � lim
n!1

1

n

1Z
0

� � �

1Z
0

f .t1; : : : ; tn/�

� lnf .t1; : : : ; tn/ dt1 : : : dtn: (A-1)

Equation (A-1) provides the general form of differential en-
tropy rate which can be significantly simplified for many cases
of interest. For example, neuronal firing which is described by
the first-order Markov chain (example in Fig. 1e) is fully char-
acterized by the joint probability density function f .t1; t2/ of
two adjacent ISIs (Cover and Thomas, 1991). Equation (A-1)
then reads

Nh.f / D �

1Z
0

1Z
0

f .t1; t2/ lnf .t2jt1/ dt1 dt2; (A-2)

where f .t2jt1/ D f .t1; t2/=f .t1/ is the conditional probabil-
ity density function (Cox and Lewis, 1966).
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The joint probability density function f .t1; t2; : : : / de-
scribes also a general, non-stationary neuronal activity. By ob-
serving the first n spikes (from the stimulus onset) over many
trials we may estimate the n-dimensional probability density
function f .t1; : : : ; tn/ that governs the immediate response of
a neuron (or a population of neurons). The definition (A-1)
holds without the limit (for a finite n) and we may formally
put � D 1

n

Pn
iD1E.Ti / instead of E.T /. Randomness of any

activity may be calculated according to formula (9), however,
due to non-stationarity the interpretation of � with respect to
the rate coding scheme becomes unclear.

Appendix B: Estimation of spiking randomness from data

The definition of randomness in formula (9) depends on the
differential entropy. The problem of differential entropy from
data estimation is well exploited in literature, see, e.g., Beir-
lant et al. (1997); Tsybakov and van der Meulen (1994) for
an overview of available techniques. It is preferable to avoid
estimations based on data binning (histograms), because dis-
cretization affects the results greatly. The support of ISI dis-
tributions is always positive, which makes the application of
kernel estimators problematic.

If the neuronal firing is described by the renewal process
our experience shows, that the simple and well researched Va-
sicek’s estimator (Vasicek, 1976) gives good results on a wide
range of data (Ebrahimi, Habibullah, and Soofi, 1992; Este-
ban et al., 2001; Miller and Fisher, 2003). The Vasicek’s esti-
mator is based on the empirical cumulative distribution func-
tion. Given the n ranked ISIs ftŒ1� < tŒ2� < � � � < tŒn�g the
Vasicek’s estimator Oh of differential entropy reads

Oh D
1

n

nX
iD1

ln
h n
2m

�
tŒiCm� � tŒi�m�

�i
C 'bias: (B-1)

The positive integer parameter m < n=2 is set prior to com-
putation and the two following conditions hold: tŒi�m� D tŒ1�
for .i �m/ < 1 and xŒiCm� D xŒn� for .i Cm/ > n. The par-
ticular values of m corresponding to various values of n were
determined by Ebrahimi, Habibullah, and Soofi (1992). The
bias-correcting factor is

'bias D ln
2m

n
�

�
1 �

2m

n

�
	.2m/C 	.nC 1/

�
2

n

mX
iD1

	.i Cm � 1/; (B-2)

where 	.z/ D
d
dz

ln� .z/ is the digamma function
(Abramowitz and Stegun, 1965). Our experience with sim-
ulated data shows, that for sample sizes n � 500 the error of
estimation is relatively small (Kostal and Lansky, 2006b), the
positive bias with respect to true values is not important for
small samples (Ebrahimi, Habibullah, and Soofi, 1992; Es-
teban et al., 2001) and the value of m may be approximated
by an integer closest to

p
n. The disadvantage of Vasicek’s

estimator is, that it cannot be easily extended to non-renewal
processes.

Non-renewal sustained neuronal activity is described by
multi-dimensional joint probability distributions and so more
elaborate techniques have to be employed in differential en-
tropy estimation. One popular approach (Kraskov, Stögbauer,
and Grassberger, 2004; Victor, 2002) is realized by the
Kozachenko-Leonenko binless estimator (Kozachenko and
Leonenko, 1987), which is asymptotically unbiased and con-
sistent, but the dimension of the problem must be known
beforehand, and the underlying probability density func-
tion must be continuous. If the spiking is described by
a d -dimensional probability density function, each vector
.tj ; tjC1; : : : ; tj�1Cd / of consequent ISIs represents a point
in a d -dimensional space. If the observed spike train consists
of N ISIs then total n D N � d C 1 of such points may be
obtained (if the firing is stationary). The estimate Oh then reads

Oh D
d

n

nX
iD1

ln�i C ln

"
.n � 1/

p
�d

� .d=2C 1/

#
C 
; (B-3)

where �i is the Euclidean distance of the i -th point to its
nearest neighbour, 
 D �

R1
0
e�z ln z dz � 0:5772 is the

Euler-Mascheroni constant and � .z/ is the gamma function
(Abramowitz and Stegun, 1965). It must be stated, how-
ever, that ’reasonable’ estimation of differential entropy of
non-renewal spiking activity usually requires large amounts
of data, often not available in experimental recordings.

Appendix C: Simulated spike trains

In this section we describe models of neuronal activity that
were used to create Fig. 1 and that are not discussed in the
main text. We employed the standard transformation method
(Devroye, 1986) for generating the ISIs from known probabil-
ity density functions.

– ad c. The spike train contains ISIs of two possible lengths,
�1 and �2, distributed according to the Bernoulli distribution

Prob.T D �1/ D 1 � Prob.T D �2/ D p; (C-1)

where p 2 Œ0; 1�. It holds

E.T / D p�1 C .1 � p/�2; (C-2)

CV D

p
.1 � p/pj�1 � �2j

.�1 � �2/p C �2
: (C-3)

From E.T / D 1 s, CV D 1 and by choosing p D 1=10 fol-
lows �1 D 4 s and �2 D 2=3 s, which was used to generate
the shown spike train.

– ad d. The probability density function of the Pareto distri-
bution is

f .t/ D

�
0; t 2 .0; b/

abat�a�1; t 2 Œb;1/
(C-4)

with parameters a > 2 and b > 0. The following relations
hold: CV D 1=

p
.a2 � 2a/ and E.T / D ab=.a � 1/.
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– ad e. The first-order Markov chain was generated by the
Downton bivariate exponential model (Downton, 1970)

f .t1; t2/ D
a2

1 � %
exp

�
a.t1 C t2/

% � 1

�
I0

�
2a
p
t1t2%

1 � %

�
;

(C-5)
where % 2 .0; 1/ is the first-order serial correlation, a D
1=E.T / and I�.z/ is the modified Bessel function of the
first kind (Abramowitz and Stegun, 1965).

– ad f. Probability density function of the gamma distribu-
tion, parameterized by � D E.T / and CV is

f .t/ D

�
1

C 2V�

�1=C2
V

� .1=C 2V / t
1=C2

V
�1 exp

�
�

t

C 2V�

�
;

(C-6)
where � .z/ is the gamma function.

– ad h. Probability density function of the inverse Gaussian
distribution (Chhikara and Folks, 1989), parameterized by
� D E.T / and CV is

f .t/ D

s
�

2�C 2V t
3

exp
�
�

1

2C 2V�

.t � �/2

t

�
: (C-7)
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