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Randomness and variability of the neuronal

activity described by the Ornstein-Uhlenbeck

model

Abstract

Normalized entropy as a measure of randomness is explored. It is employed to

characterize those properties of neuronal firing that cannot be described by the

first two statistical moments. We analyze randomness of firing of the Ornstein-

Uhlenbeck neuronal model with respect either to the variability of interspike intervals

(coefficient of variation) or the model parameters. A new form of the Siegert’s

equation for first-passage time of the Ornstein-Uhlenbeck process is given. The

parametric space of the model is divided into two parts (sub- and supra-threshold)

depending upon the neuron activity in the absence of noise. In the supra-threshold

regime there are many similarities of the model with the Wiener process model.

The sub-threshold behavior differs qualitatively both from the Wiener model and

from the supra-threshold regime. For very low input the firing regularity increases

(due to increase of noise) cannot be observed by employing the entropy, while it is

clearly observable by employing the coefficient of variation. Finally we introduce and

quantify the converse effect of firing regularity decrease by employing the normalized

entropy.

1 Introduction

Several approaches have been proposed in the literature to model the activity of

a single neuron. Such models usually describe the evolution of the membrane
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potential and they can be either stochastic or deterministic (Gerstner and Kistler,

2002; Tuckwell, 1988). The leaky integrate-and-fire concept is employed very often

(for a recent review see Burkitt (2006)). In one of the stochastic versions of this

model the membrane potential evolution is described by the Ornstein-Uhlenbeck

(OU) process bounded by a firing threshold. Another and simpler model, parallel

to the OU process, is the perfect integrator described by a Wiener process with a

positive drift. Due to its simplicity many results can be obtained in a closed form

while for the OU model only few analytical results are available.

The neuronal firing in both these models is viewed as a first-passage time of the

membrane potential through a threshold S. The spike itself is considered to be a

point event after which the membrane potential is reset. The spiking activity of the

OU and Wiener models is therefore described by the renewal process of interspike

intervals (ISIs) T with probability density function f(t). The densities f(t) for

different parameter values are mutually compared by calculating the moments of the

distribution. The advantage of using the approach based on the moments lies in the

possibility of relating statistical characteristics with some key concepts of neuronal

coding or neuronal properties. For example, the mean value E(T ) describes the

neuronal firing from the rate coding hypothesis point of view (Gerstner and Kistler,

2002). The characteristics based on the variance can be related to the variability

coding hypothesis (Perkel and Bullock, 1968) and may also provide some information

about the metabolic efficiency of the neuronal coding (Laughlin, 2001). Variability,

reflected by the coefficient of variation, of ISIs generated by the OU model was

recently a topic for a very extensive discussion initiated by Softky and Koch (1993).

On the other hand the estimates of higher moments cannot be reliably determined

from samples of relatively small size as is normal with the neuronal data. Thus the

attempts to use higher moments are not as frequent as using mean and CV (Han et

al., 1998; Lewis et al., 2001; Ruskin et al., 2002; Shinomoto et al., 2002). Besides
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the approach based on statistical moments, the information-theoretic quantities are

employed in analysis of neuronal signal in order to provide an alternative point of

view. Recently, for example, the concept of the Kullback-Leibler distance has been

utilized in Johnson et al. (2001) and DeWeese and Meister (1999), although for a

different purpose than in this paper.

The aim of our paper is to discuss the properties of different firing regimes of the

OU model by employing statistical characteristics of the resulting spike trains with

respect to the two input model parameters – signal µ and ’noise’ σ2. Besides the

mentioned E(T ) and CV we define the normalized entropy (related to the Kullback-

Leibler distance), η, as a measure of randomness of the neuronal firing. Among these

three characteristics (E(T ), CV , η) we concentrate mainly on the differences between

CV and η, i.e., the differences that go beyond the first moment. We continue the

work started in Kostal and Lansky (2007) and show, that the notions of variability

and randomness describe different qualities of the neuronal firing and that these

terms cannot be interchanged generally. We also note at this point, that the relation

between η and some recently proposed information measures (Chacron et al., 2001,

2003; DeWeese and Meister, 1999) has been exploited in Kostal and Lansky (2006b).

Our current study describes similar phenomena to those obtained in Lindner at al.

(2002), though from a different point of view. The approach used here permits a

global comparison of the ISI probability densities generated by the model. Further

on, working in the parameteric space of the original model gives an opportunity

to judge if the features observed in the standardized form can be realized by real

neurons.
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2 Theory and Methods

2.1 Classification of neuronal firing

One of the most important characteristics of the neuronal firing (besides the

firing rate) is its variability. The variability is often described by the coefficient

of variation, CV , which relates standard deviation to the mean value, CV =
√

V ar(T )/E(T ). The CV is dimensionless and does not depend on the linear scaling

of the random variable, CV (aT ) = CV (T ). In this sense the CV does not depend

on the actual E(T ) and both these numbers provide separate views on the spiking

activity. Nevertheless, E(T ) and CV cannot be used to distinguish between two

probability distributions that differ in higher than second moments.

Instead of looking for classifications based on higher moments we offer a

conceptually different approach based on the randomness of the firing. The measure

of randomness of a random variable T with probability density f(t) is given by the

entropy, h(f),

h(f) = −
∞
∫

0

f(t) ln f(t) dt, (1)

see Cover and Thomas (1991) for details. The entropy can be seen as measuring

the ’choice’ in neuronal firing, i.e., its value decreases as the possible ISI lengths

are subject to more constraints. The maximum entropy on [0,∞) for a fixed E(T )

is realized by the exponential distribution, h(f) = 1 + ln E(T ). The particular

value of h(f), however, generally depends on E(T ). In order to make the entropy

independent of the linear scaling (in the same way as CV ) we transform the original

random variable T to Θ = T/E(T ). The ’new’ variable Θ is dimensionless with mean

E(Θ) = 1 and we denote its entropy as ’normalized entropy’ η(f). The normalized
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entropy is related to the original entropy of the unscaled variable T as

η(f) = h(f) − ln E(T ). (2)

If the firing is regular, i.e. f(t) = δ(t − t0), then η(f) = −∞. On the other hand,

the value of η is maximized for the exponential probability density function and in

that case η(f) = 1 which identifies maximum randomness of the firing.

Normalized entropy (2) can be related to the Kullback-Leibler (KL) distance,

D(f, g), of a general probability density function f(t) to the exponential density,

g(t) = λe−λt, with the same mean, i.e., with λ = 1/E(T )

D(f, g) =

∞
∫

0

f(t) ln
f(t)

g(t)
dt = 1 + ln E(T ) − h(f). (3)

Combining formulas (2) and (3) yields

η(f) = 1 − D(f, g). (4)

Note that for the exponential distribution CV = 1 holds, but the reverse

statement is not valid. On the other hand, it follows from the properties of the KL

distance (Cover and Thomas, 1991) that η(f) = 1 if and only if f(t) is exponential

density. Thus, for CV 6= 1 it always holds η(f) < 1. Finally we note, that the

(normalized) entropy can be estimated directly from experimental data, see, e.g.,

Beirlant et al. (1997); Tsybakov and Meulen (1996) for an overview of different

methods.
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2.2 The models

We assume that the membrane depolarization of a neuron is described by a stochastic

process X = {Xt; t ≥ 0} and a spike is elicited any time the process crosses a

constant boundary S from below, under the condition that the process is reset after

each spike. The time between two consecutive firings of the neuron is identified with

the first-passage time of the stochastic process through a threshold S, T = inf{t >

0|Xt ≥ S, X0 = x0 < S}.

The OU model describes the membrane depolarization by the stochastic process

that fulfills the stochastic differential equation

dXt =

(

−Xt

θ
+ µ

)

dt + σdWt, X0 = 0 (5)

where W = {Wt; t ≥ 0} is a standard Wiener process, θ > 0 is the membrane time

constant, the constant µ characterizes the net-neuronal input and σ > 0 is a further

constant related with the variability of the neuronal input. Commonly, the constant

µ is denoted as the signal and σ2 as the noise. However, such a distinction may

appear to be confusing, because generally, there is dependence between µ and σ2

(Hanson and Tuckwell, 1983; Lansky and Sacerdote, 2001) and large values of µ

imply relatively low values of σ2 (Ditlevsen and Lansky, 2005). The choice X0 = 0

implies that the resting and resetting potentials are set to zero. The parameters

S and θ are the intrinsic parameters of the model while µ and σ2 depend on the

activity of other neurons in a network (Tuckwell and Richter, 1978). The parameters

of the process determine two firing regimes, depending on the behavior of the model

in absence of noise (σ2 = 0). If µθ > S (supra-threshold regime) the neuron is active

also in absence of noise and the firing is regular. If µθ < S (sub-threshold regime)

the neuron is silent in absence of noise. The intermediate situation corresponds to

the threshold regime µθ = S.
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The Wiener model can be obtained by taking the limit θ → ∞ in formula (5).

The membrane potential is then described by the Wiener process with drift Y =

{Yt; t ≥ 0}, that fulfills the stochastic differential equation

dYt = µdt + σdWt, Y0 = 0. (6)

Due to the properties of the model (6) an additional condition µ > 0 has to be

imposed, otherwise T is not a proper random variable, Prob(T = ∞) > 0. From

formula (6) follows that the membrane potential always approaches and crosses the

threshold linearly for any σ2. From this point of view, the Wiener model is always

operating in the supra-threshold regime.

The ISI probability density of the Wiener model is known in a closed form, and

is equivalent to an inverse Gaussian density (Chhikhara and Folks, 1989),

fW (t) =
S√

2πσ2t3
exp

{

−(S − µt)2

2σ2t

}

. (7)

The ISI probability density of the OU model is known in a closed form only in the

threshold regime µθ = S

fOU(t) =
2S√
πσ2t3

exp (2t/θ)

(exp (2t/θ) − 1)3/2
exp

{

− S2

σ2θ(exp (2t/θ) − 1)

}

. (8)

In the remaining cases, i.e., µθ 6= S, numerical techniques have to be employed. The

mean and CV of the Wiener model follow from formula (7),

E(T ) =
S

µ
, CV =

σ√
µS

. (9)

For the OU model the first two moments can be written in several ways in terms

of integrals (Siegert, 1951; Keilson and Ross, 1975) or in terms of series (Tuckwell
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and Cope, 1980; Ricciardi et al., 1999). Nevertheless these expressions are difficult

to handle especially from a numerical point of view.

2.3 Numerical procedures

The method used throughout the paper for the numerical evaluation of the

ISI probability density function fOU(t) is based on the integral equation with

non-singular kernel derived in (Buonocore et al., 1987; Ricciardi et al., 1999).

Furthermore, E(T ) can be evaluated using a closed form expression or calculated

numerically from fOU(t) together with CV . Normalized entropy given by formula (2)

is estimated numerically by an approximation of the involved integrals using a

trapezoidal rule. We explicitly note that a reliable numerical integration is possible

because the probability density function can be numerically evaluated with sufficient

precision in a sufficiently dense set of points.

A simulation technique for the computation of the entropy does not give reliable

results due to the estimation of the density function via histograms that are not

smooth and depend on the binning. Kernel density estimators are also not useful

here since, even if they give smooth densities they are bin-width dependent.

3 Results and discussion

Throughout the paper we set S = 10mV and θ = 10ms to make our results

biologically plausible and comparable with the previously published studies (La

Camera et al., 2004; Inoue et al., 1995; Lansky and Rospars, 1995; Kandel

and Schwartz, 1985; Stevens and Zador, 1998; Tuckwell and Richter, 1978).

Consequently, the threshold value of neuronal input is µ = 1 mV/ms and any

smaller value results the sub-threshold regime independently on the value of σ2.

The maximum value of σ2 we allow is σ2 = 40 mV2/ms which is within the range of
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the estimated values from experimental data (Inoue et al., 1995).

3.1 Relations between model parameters and statistical

characteristics of the generated ISIs

In order to obtain better insight into the behavior of the OU model we first review

the dependence between the two input parameters µ and σ2 and the two statistical

characteristics CV and E(T ) in the sub-threshold and supra-threshold regimes. The

Siegert formula (Siegert, 1951) for the mean first-passage time of the OU process is

E(T ) =

√

πθ

σ2

S−µθ
∫

−µθ

exp

(

z2

θσ2

) [

1 + erf

(

z

σ
√

θ

)]

dz. (10)

Equation (10) can be written as

E(T ) =
(S − µθ)2

σ2 2F2

(

1, 1; 3
2
, 2;

(S − µθ)2

σ2θ

)

− µ2θ2

σ2 2F2

(

1, 1; 3
2
, 2;

µ2θ

σ2

)

+
πθ

2

[

erfi

(

µ
√

θ

σ

)

+ erfi

(

S − µθ

σ
√

θ

)

]

, (11)

where 2F2(a1, a2; b1, b2; z) is the generalized hypergeometric function (Abramowitz

and Stegun, 1972) and erfi(z) = erf(iz)/i is the imaginary error function. This

expression is particularly useful for numerical evaluation since the involved special

functions can be implemented with sufficient precision.

As shown in Fig. 1 the qualitative dependence of E(T ) on σ2 is monotonous

for all values of parameter µ. With decreasing σ2 the E(T ) increases to infinity in

threshold (µ = 1) and sub-threshold (µ < 1) regimes and to a constant in supra-

threshold (µ > 1) regime as expected intuitively. With increasing σ2 the mean ISI

always tends to zero, which is shown up to 5ms.

The relation between CV and σ2 is shown in Fig. 2. We can see again the different
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Fig. 1: The dependence of the mean ISI upon the noise σ2 for different

values of µ for the OU model (S = 10mV and θ = 10ms, µ is in mV/ms).

behavior between the two regimes in the OU model. In the supra-threshold regime as

σ2 → 0 we get CV → 0 that means absence of variability, indeed the ISIs are almost

constant. In the sub-threshold regime it holds CV → 1 for σ2 → 0. As expected,

the density of T converges to an exponential density and this is illustrated by CV

close to one. With σ2 increasing we notice the local decrease of CV . This effect is

often denoted as the coherence resonance (Lindner at al., 2002).

In Fig. 3 the dependence between E(T ) and CV is illustrated. The dependency

is always plotted for fixed µ and varying σ2. In the supra-threshold regime as CV

increases E(T ) monotonically decreases. On the other hand, in the sub-threshold

regime CV does not determine E(T ) uniquely, i.e., it is impossible to determine

E(T ) and σ2 only from µ and CV . However, it is possible to determine µ and CV

from E(T ) and σ2 as Fig. 1 shows. Comparison of Figs. 1, 2 and 3 reveals, that
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Fig. 2: Coefficient of variation CV for the OU model in dependency on the

noise σ2 with different values of the input parameter µ (in mV/ms).

knowledge of (almost) any two values in the quadruplet (µ, σ2, E(T ), CV ) uniquely

determines the remaining two. The only exception is that (E(T ), σ2) cannot be

determined from (µ, CV ) due to the coherence resonance effect (local CV decrease)

described later.

3.2 Randomness and moment characteristics of firing

We examine the behavior of randomness by employing the normalized entropy in

dependency on the CV . (Recall that the effect of different E(T ) values is removed

for both of these measures.) For the Wiener model the normalized entropy can be

written in terms of CV as follows from Kostal and Lansky (2006a)

η(fW ) =
1

2
+

1

2
ln(2πC2

V ) − 3 e1/C2

V

√

2πC2
V

K
(1,0)
1

2

(1/C2
V ), (12)
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Fig. 3: The mean ISI in dependency on CV (along the curves from right

to left σ2 decreases) for different values of µ for the OU model (S = 10mV

and θ = 10ms, µ is in mV/ms). The maximum value of σ2 is 40mV2/ms.

Note the non-unique relation between E(T ) and CV due to the coherence

resonance effect (local decrease in firing variability with increasing input

noise) in the sub-threshold regime.

where K
(1,0)
ν (z) is the derivative of the modified Bessel function of the second kind

(Abramowitz and Stegun, 1972). For the OU model only numerical procedure is

available.

The results are shown in Fig. 4 for the Wiener model and both sub- and supra-

threshold regimes of the OU model. We see that maximum randomness does

not coincide with maximum variability. (Note, that there are distributions with

maximum variability and randomness coinciding, i.e., Pareto distribution, see Kostal

and Lansky (2006b) for details). Similarly, we see that CV = 1 does not imply
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maximum randomness. For the OU model in the sub-threshold regime CV does

not determine the randomness (and thus the shape of the ISI probability density)

uniquely if µ is fixed (see Fig. 2). We can deduce from Fig. 4, that there are always

two different shapes of the probability density functions with CV close to unity:

one which is very close to the exponential density (maximum randomness) and the

second one further away. With small input µ the CV cannot be made deliberately

small regardless of the noise amplitude. As the input in the sub-threshold regime

increases the minimal value of CV , C
(min)
V , decreases. Note that around CV = 1.25

the values of η are nearly the same for all sets of parameters of the sub-threshold

OU model.

The effect of coherence resonance can be observed in both measures, CV and η.

However, it follows from the picture that the coherence resonance can be reliably

observed in randomness only for µ > 0.2. This fact further enhances the difference

between variability and randomness, i.e, the increase of regularity (as measured

by CV ) does not necessarily imply the decrease in randomness of the spike train.

Namely, few sufficiently long ISIs in otherwise ’almost’ regular spiking activity result

in a high variability although the randomness may be low.

For the case of µ ≥ 1 (the threshold and supra-threshold regimes) the behavior

of the model is less complicated and all CV values are obtainable. Furthermore it

always holds η � 1, i.e., the ISI probability density is never close to the exponential

distribution. The curves η(fOU) parameterized by the CV in the supra-threshold

regime have a very similar shape and are similar to the Wiener model as expected.

For increasing µ the normalized entropy of the OU model converges to the entropy

of the Wiener model and the shape of η(fOU) is less convex. This similarity holds

only for small CV . For CV > 1.4 the randomness of the OU model is always lower

than the randomness of the Wiener model.
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Fig. 4: Normalized entropy in dependency on the coefficient of variation CV

with different values of the input parameter µ (S = 10mV and θ = 10ms).

The maximum value of σ2 is 40mV2/ms. The dashed line represents the

normalized entropy of the Wiener model.

3.3 Randomness and input parameters

In this section we explore randomness in the Wiener and OU models with respect

to the model parameters (µ, σ2). The normalized entropy for the Wiener model is

given in terms of (S, µ, σ2) by combining formulas (9) and (12). For the OU model

we can write the normalized entropy only in the threshold regime (µ = 1) and we

get an expression in terms of the parameters (S, θ, σ2)

η(fOU) =
1

2
+

3

2

[

γ + ln

(

4S2

σ2θ

)]

− ln

(

2S√
πσ2θ3

)

− 2

θ
E(T ) − ln E(T ), (13)
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where E(T ) is given by formula (11) and γ ≈ 0.577 is the Euler Gamma constant

(Abramowitz and Stegun, 1972). For the threshold regime we checked the agreement

between η given by formula (13) and its numerical estimation obtained directly from

the probability density function.

The results relating randomness to µ and σ2 are shown in Fig. 5. For µ =

0 the dependence η(σ2) is almost linear and decreases rather slowly. The non-

linearity is more pronounced for increasing values of µ. For µ < 1 as σ2 → 0

the normalized entropy tends to 1, it means that the probability density function

is getting exponential. Then as σ2 increases the randomness decreases to its local

minimum (coherence resonance) and then increases again to its local maximum and

it slowly decreases again. On the other hand, for µ ≥ 1 the firing gets more regular

in the case of σ2 → 0 which is reflected by η → −∞. The local maxima of η occur

for higher values of σ2 with increasing µ.

Though Fig. 5 looks very similar to Fig. 2 there are substantial differences

between the measures CV and η. To demonstrate this we plot the dependence of

E(T ) on η in Fig. 6 and compare it with a similar plot for CV in Fig. 3. The behavior

of normalized entropy is more complex. The coherence resonance is present in the

sub-threshold regime only for µ > 0.2 as already mentioned. Moreover, the relation

between E(T ) and η is non-unique even in the supra-threshold regime. For each

µ > 0.2 we observe a local increase in randomness (and irregularity of the firing) in

dependence on E(T ) (or σ2) even though CV is monotonous in the supra-threshold

regime.

4 Conclusions

The normalized entropy as a measure of randomness was introduced. We applied

it to the neuronal activity described by the OU and Wiener models. In particular,
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Fig. 5: Normalized entropy as a function of the noise σ2 for different values

of parameter µ of the OU model (S = 10mV and θ = 10 ms). Note the

similarity with Fig. 2, however, the local decrease in CV in the sub-threshold

regime is not prominent for µ smaller than 0.2mV/ms.

we described the firing characteristics that go beyond the first statistical moment

and analyzed the randomness of the ISIs with respect to the coefficient of variation

and the mean ISI (the statistical approach) or with respect to the model parameters

(the modeling approach).

The behavior of the OU model is qualitatively different in the sub- and supra-

threshold regimes. In the sub-threshold regime CV does not determine uniquely the

shape of the ISI probability density function even if the model parameters (except

the input noise) are fixed. For both sub- and supra-threshold regimes we identified

such regions of CV and model parameter values for which the randomness can be

considered independent on the neuronal input. Finally we noted that the local
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present for regimes with µ greater than 0.2mV/ms.

decrease in variability (with respect to the noise) for very low neuronal values input

is not reliably observable by employing the normalized entropy of the firing, which

demonstrates the key difference between randomness and variability. Moreover, we

described the converse effect (the local decrease in regularity of the firing), which

on the other hand cannot be observed by employing the notion of variability.
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