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Abstract. We analyze the first phase of information transduction inrttaelel of the olfactory
receptor neuron of the male mo#imtheraea polyphemugVe predict such stimulus characteristics
that enable the system to perform optimally, i.e., to tranas much information as possible. Few
a priori constraints on the nature of stimulus and stimulus-toaigransduction are assumed.
The results are given in terms of stimulus distributions atdrmittency factors which makes
direct comparison with experimental data possible. Ogtstimulus is approximatelly described
by exponential or log-normal probability density functishich is in agreement with experiment
and the predicted intermittency factors fall within the &strange of observed values. The results
are discussed with respect to electroantennogram measateand behavioral observations.

Keywords: Pheromone receptor, Information processiugtheraea polyphemus
PACS: 87.19.1t, 87.19.Is

INTRODUCTION

The main task of neuronal sensory systems is to "encode’hnaftion about the animal’s
environment into its internal representation. Physiatagreasons limit the range of
neuronal responses and consequently not all stimulusstatebe encoded with equal
reliability. The stimulus-response relation describesriliability of encoding and thus
implicitly provides such stimulus characteristics thatmaze the information capacity
of the neuron. One of the first studies of stimulus-responsetion with respect to
maximizing the information gain was done on large monopgklts (LMC) in the
compound eye of the fly [1]. The LMC is a graded potential ceficla codes the
contrast fluctuations. The contrast levels in natural flyebitat were measured by
objective methods (photodiode) and the resulting charatitss were compared with
those predicted from the stimulus-response curve. It wawslthat LMCs are adapted
to the animal’'s ecology as the natural stimulus maximizescills’ performance. The
following studies, e.g., Atick [2], Bialek and Owen [3], Hat@ [4], Hornstein et al.
[5], Laughlin [6], confirmed that the natural signals areqassed optimally by sensory
systems. Nevertheless, the majority of available studiesider the visual system only.
In this paper we parallel the pioneering work by Laughlin, [ddlapting the method to
suit the specificity of invertebrate olfactory system.

Orientation towards food and mate, especially in insestgni olfactory-controlled
behavior which relies on the detection of odorant molecdisered from the source.
The atmospheric turbulence causes strong mixing of thendiceeates a wide spectrum
of spatio-temporal variations in the signal. The largestiesl are hundreds of meters



in extent and may take minutes to pass a fixed point, while tielest spatial varia-
tions are less than a millimeter in size and lasts for mibsels only [7, 8]. The mean
concentration of the odorant decreases monotonicallytivéldistance from the source,
however, the relation for concentration fluctuations angtfor instantaneous magni-
tude of the signal is more complicated. Due to the inhomogemuixing very high
concentration values can by found in a wide range of dis&froen the source, though
their frequency decreases with distance [7]. An importaaracteristics of the detected
signal is its intermittency, i.e., the fraction of time cwgiwhich non-zero concentrations
are detected. It has been shown [9, 10] that the naturallsgéghly intermittent in

a wide range of experimental conditions. The signal is prekess than 50 % of the
total time, usually even smaller intermittency is detecied., Murlis et al. [10] re-
port 20 % in measurements of pheromone dispersion in nataralitions close to the
source. Various types of ion detectors are usually empléyetheasurements, though
Baker and Haynes [11], Murlis et al. [10] have also used adactiennogram responses.
The description of the complicated and inhomogeneoustsiieiof the detected odorant
concentrations requires an approximative approach atidtgtal methods are usually
employed. The probability density function over the whdienslus range is the most
convenient descriptor of the signal [7, 8, 10, 12, 9].

The variations in the concentration of the stimulus arerggsdor the insect to locate
the source of the stimulus. The animal loses direction tethce and its upwind flight
gets "arrested" if it gets into a cloud of homogeneously itisted pheromone [13, 14].
Experiments in tunnels have shown that characteristiesflii&kquency and intensity of
the intermittent stimulus play a key role in maintaining fh@per direction of flight
[15]. The insect’'s sensory system differs from the ion deteand thus the level of
temporal and spatial detail the receptor neuron percedasited by both physical and
biochemical reasons [11, 16, 17]. In other words, not allitifiermation pheromone
signal potentially carries can be processed. We analyzérdigohase of information
transduction in the olfactory receptor of the male maéittheraea polyphemudhe
external stimulus (the odorant) is given by the temporalceatration of the major
component of the sex pheromone, the (E,Z)-6,11-hexadexgddicetate. The response
of the system (the internal signal) is the graded conceotraif activated receptor
molecules. This process of transduction represents thast@ge in the cascade of events
finally leading to generation of action potential. The dethianalysis of the first phase
provides insight into the information processing at thegkafreceptor level. We may
paraphrase the fundamental data processing inequalifyifl®me information does
not pass the first stage, it cannot reappear in any sequstatg@ of the processing. The
first stage of transduction cascade therefore sets camsta the final performance of
the receptor.

The goal of this paper is to characterize the performancheo$timulus-to-response
transformation, namely to find and describe the optimalstis (or the class of optimal
stimuli) that maximizes the performance. Mathematicald&s this task is provided
by the statistical theory of information and the proposedhm@ can be used in similar
or more general situations. Similarly to LMCs studied in [i¢ tresponse of the first-
stage information transduction in the olfactory neuron igraded signal. Likewise,
the experimental measurements of odorant plume concemtretharacteristics in the
animal’s habitat were performed by objective devices (ietedtors). The comparison



of predicted and natural stimulus reveals how well the reardp adapted or "tuned" to
the signals it encounters most often.

METHODS

The model of the odor ant receptor

The first stage of information processing in the olfactonyssey neuron is described
by the transformation of the external signal (the odoranteatration in the air) to the
internal signal (the concentration of activated receptdiise model of odorant receptor
we consider here was developed by Kaissling and Rosparsiti3karesents a modified
version of the original model developed by Kaissling [16heTmodification has no
impact on the obtained results (verified numerically) tHoitgsimplifies the original
model in terms of required parameters and variables. Theiclaé reactions form the
following chain:
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The network (1)—(3) includes the external ligand (the odOr&,;, its uptake L and
reversible binding to a receptor R, the reversible changehefcdomplex R to an
activated state R(the internal signal), a reversible binding of L to a deaatiivg
enzyme N (see Kaissling and Rospars [19] for details) and raversible odorant
deactivation by changing of the complex b P+N. The concentrations of the eight
species involved are denoted by square brackets and thesvate functions of time.
For simplicity we omit to denote the explicit dependence loa time variable and
adopt the following notation for the individual concenimais: Ly, = [Lai (t), L = [L](t),
R= [R](1), R = [RL](1), R = [R*](t), N = [N] (1), P = [PI(t) andN_ = [N_](1).

The total concentration of the receptor moleculeg,= R+ R_ + R, does not change
over time as well as the total concentration of the deadtigagnzyme Nyt = N + Ly,
remains constant. The evolution of the reactions (1)—(8me given the external signal
Lair is fully described by five first order ordinary differentiajueations (4)—(8) and two



algebraic equations (9) and (10):
dL
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R = Ra—R —FK 9)
N = Not—Ln. (10)

The state of the system at any given tingt) = {L(t),R_(t),R*(t),Ln(t),P(t)}, is
given by the actual values of the involved variables and veeirag that at = O the

concentration&, R ,R",Ly andP are zero. The values of parameters were determined

by Kaissling [16] and Kaissling and Rospars [19], we sumnestitiem in Tab. 1.

TABLE 1. Summary of the odorant receptor model pa-
rameters [16, 19].

ks = 0.209sium-1t ks = 79st

k, = 16.8s! k4, = 98stl

ks = 4sium-1t ks = 989st

ke = 29.7st kK = 29000s!?
Rot = 1.64uM Not = 1uM

The differential equations (4)—(8) follow the law of massi@t for chemical reac-
tions. In reality, the response of the system is not detastien The value fluctuates
due to the stochastic effects like spatial inhomogeneitigise distribution of reactants.
If the concentrations of reactants are high enough abowgesmolecular levels then
the fluctuations are relatively small and can be neglectesveder, for small doses the
situation is more complicated and the stochastic effecte @ be described properly
[20]. In this paper we thus do not investigate the effect dfesrely small odorant doses.
The value ofR* corresponding to one activated receptor molecule per nearapprox-
imately 1052 uM [19] which is far below the values considered in this paper.

Optimal stimulusreconstruction

The main task of the first-stage of signal processing in tfectary receptor neuron is
to transform the input signal (the odorant concentratiaty its internal representation
(the concentration of activated receptors). The neurofopas optimally if it preserves
as much information about the input as possible. Accordintipé information theory,
information is transmitted only if the input varies randgnil8]. From this point of
view a homogeneous cloud of odorant would carry zero infeionaThe exact amount
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FIGURE 1. The amount of information the neuron can transfer is limbgdhe finite range of possible
response states. Furthermore, the minimal stimulus inemérthat changes the response state is not
constant over whole the stimulus range. The amount of tearesf information therefore depends both
on the range of stimulus and on the frequency with which paldr concentration values occur. If the
neuron performs optimally then all response states have tesbd equally likely, which in turn uniquely
determines the optimal stimulus probability density fimetiadapted from Laughlin [1]).

of transferred information is determined from the stimulesponse relationship. The
problem therefore lies in relating two signals,, (the stimulus) andR* (the response).
The information, however, is not transmitted at a time instaather we assume that
it is gained within a time interval. Therefore we divide thmeé axis into "windows"
or "bins" of lengthAt, i.e., we do not to consider any temporal details befdwThe
stimulus is represented by a constant value of concemrigjpin the time window and
the responsep, to such stimulation is the average value of activated rtecegaken
over the corresponding time windgw= (R*) ;. This simple set-up allows us to test the
performance of the receptor model at different levels ofgeral resolution.

The most important factor limiting the information transie the bounded range of
responsep due to finite number of receptor molecules per neuron. Oreendximum
number of receptor molecules is activated no higher stiswgloncentration can be
encoded. Furthermore, the neuron can perceive a changenust value differently
depending on the basal stimulus concentration. The amdurdrsferred information
therefore depends both on the range of stimllysand on the frequency with which
particular concentrations values occur, see Fig. 1. Inrotloeds, the description dfy;,
in each selected time window is given in terms of probabdigysity functionf (Lay).

The information theory [18, 21, 1] describes the optimamsius characteristics
implicitly: the system performs optimally if all possiblesponse values are used with
equal frequency. In the following we describe the "step-Wisethod to obtain such
stimulus characteristics that equalize the output usags.WwWe compute the reaction of
the system to all possible stimuli in the first time windd@®@,At), given the zero initial
condition att = 0, see Fig. 2a. For each stimulus the respgngethe average number
of activated receptors ifD,At), Fig. 2b. The relation betwedr;, andp describes the
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FIGURE 2. Stimulus optimization in the first time windoy®,At). (a) The stimulud 4 is a constant

function bounded insid¢0, L1 (several examples shown). (b) Starting from zerd &t0 the time

development oR* (dashed line) is averageg) over the first time window (solid line). (¢ "encodes"
the stimulus value so the stimulus-response cyrilgy;) can be constructed. (d) The stimulus-response
curve uniquely determines such stimulus probability dgrfainction f (L) that all responses are used
equally likely.

stimulus-response curve(Lai), Fig. 2¢c. Conditioned that all responses have to be used
with equal frequency, the stimulus cumulative distribntfoinction can be related to
p(Lair). The optimal stimulus probability density functidiL,;;) can be then written as

f(Lair) = dliir {P(Lair) _Pminl |

where pmin resp.pPmax are the minimal resp. maximal response values encountared i
the time window, Fig. 2d. Once the optimal stimulus prokabilensity for the time
(0,At) is known we use it to select one stimulus value. The reactidimeosystem to this
particular stimulus is computed, the state of the sysfeant = At is determined and
we can proceed to the next time windddt, 2At). Note that the information transfer
in this system has a memory, i.e., the current state is affecbt only by the current
stimulus but also by the history of stimulation. Therefdre state of the syste®(At)
must be taken into account for evaluation of the respondesittitne window(At, 2At).
The optimization proceeds similarly iff\t,2At): we again compute the time course
of the activated receptor concentratid®i and determine their averages) (under all
possible stimulus conditions, Fig. 3. The optimal stimybusbability density function
in (At,2At) is determined again by employing formula (11). After seétezbne random
stimulus value the process continues into the followingetwindow. The range b
and the shape df(Laj) may change from one window to another.

The actual amount of transferred information in each stepbeaestimated from the
available response range. If we divide the ratmén p, maxp) into n bins (that cannot

(11)

Pmax— Pmin
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FIGURE 3. Stimulus optimization in the second time wind@t, 2At). One particular stimulus value
is drawn randomly fronf (L) reconstructed in the first time winddi®, At). The corresponding response
and the state of the syste®At) are computed. In the second time wind@t, 2At) the responses and
their averages are determined again for all stimulus vadlag&sg into account the state systent atAt).
The stimulus-response curve and the corresponding stinutbability density function are determined
and the process is carried into the next time window.

be divided any further) the amount of information which carttansferred is logn bits
[18]. For each time window we thus compute the estimate oistiexred information,
here denoted as obtainable informatifyg;, in bits as

maxp — min
lobt = 100, (%) ; (12)

where the division factofAp is set prior to the the optimization process. We adopt the
convention thatg,: = O if the coding range is smaller thaxp. The factorAp corre-
sponds to the minimal number of activated or deactivateglgtec molecules the system
perceives as a change. We set the minimal value to 100 mekewetiich consequently
givesAp = 10~%2 uM. Substituting forAp into formula (12) and taking into account
that the maximal concentration of activated receptofR"isz 0.24uM [19] yields the
maximum information gaity; ~ 12 bits. We furthermore assume tlfgg does not de-
pend on the length of the time window.

RESULTS

Single-pulse stimulation

First we examine the behavior of the model under the stinmratith a single pulse
of unlimited duration. Setting the left-hand sides of equrat (4)—(8) equal to zero gives



the asymptotic value d®* as a function of the constahi;,

-1
R = (1— Q4)Rot [ﬁ’:ﬁi“ (Tj&f’: - 1> + 1} : (13)

[19], whereKy3 = k_3/ks corresponds to the dissociation constant of ligand and re-
ceptor,Qs = k_a/(ka + k_4) andKys6 = (k-5 + ke)/ks are the Michaelis constants
of the ligand and the deactivating enzyme. Using the valua® fTab. 1 we find that
the dose-response relationship (13) is almost perfecgtal with the maximum con-
centration of the activated receptors nRix= (1 — Q4)Riot ~ 0.24uM [19]. The mini-
mal concentration of infinite duration that activates theximmal number of receptors is
Lair ~ 0.001uM.

Next we examine the response of the system to a constantlatiomuof limited
duration. In Fig. 4 we see the time coursd¥fgiven several different values bf;, from
0.0001uM to 0.005uM. The stimulation starts at= 1 s and lasts for 1 s. We see, that the
system responds differently even for stimulus concermnathigher than the minimum
concentration which evokes asymptotically maximum nunatbactivated receptors (the
asymptotic maximunhg; = 0.001uM). In other words, valuekgj > 0.001uM can be
distinguished only if the duration of the stimulus pulsereeses. However, the duration
of the falling phase gets progressively longer which hasoitgmt consequences on
distinguishing details in sequences of large stimulusealDuring the simulations we
avoid extremely small doses of odorant due to the validityhefmass action law. For the
same reason we do not set the length of the time winfibaelose to zero. The smallest
value we allow i\t = 0.2 s which is near the upper value of the experimentally oleskrv
range [17]

Multi-pulse stimulation

First we employ the optimization process directly, i.edenthe condition of stimulus
being permanent but varying. In the first example we set th l&f temporal detail to
At = 0.2s. The upper bound on stimulus value [ = 0.1 uM, which is 1000« the
concentration sufficient to reach the asymptotic maximuwh werefore the stimulus
range can be considered unrestricted.

The results are presented in Fig. 5. The plots show the dtéte system in each time
window (time is on the horizontal axis). The first row shows thptimized stimulus
value which is randomly drawn from the optimal probabiligndity function in each
time window. The chosen stimulus value in turn determinesbishavior of the system
in the next time window due to the memory effect. The secomdisdhe reaction of the
system to the optimized stimulus and the third row showsrtesterred (or obtainable)
information. We see, that the performance of the systemtistable in time, i.e., the
obtainable informatioih,,; monotonically decreases. The reason lies in the prolomgati
of the falling phase oR*, see Fig. 4. The response range is initially bounded from
below by minp = O0uM (we start from zero initial condition) but due to the memory
effect the actual value of mmincreases in subsequent time windows. The upper limit
of responses, max, does not change because it is given by the physical prepesfi
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FIGURE 4. Respons&* of the system to pulsed stimulation (frare 1 s tot = 2 s) of varying intensity.
The limited duration of the pulse allows the system to dettggthigher than M01uM (solid line), for
which the system saturates asymptotically. Note the s@aifi prolongation of the falling phase with
increasing stimulus value.

the system. Consequently, the response range decreaskg;dinclly (and inevitably)
reaches zero no matter how large is the stimulus value. iehitity of the system is
reflected also in the time development of optimal stimulugopbility density function,
f(Lair), see Fig. 6. Stimulus probability density functib(lLa;) in the first time window,
which corresponds to maximhjy;, can be approximated by the exponential probability
density function

1
f(Lair) = b exp(—Lair/A), (14)
with mean valuel = 0.03uM. A better fit, in this case, is provided by the log-normal
distribution 0 2
1 nx—u
f(Lair) = exp|—————|, 15
( a|r> XO'\/ZT p|i 20_2 :| ( )

with 0 = 1.5 gy = —3.6 and mean value.08uM. In subsequent time window( L)
transforms into uniform distribution over the whole stimsirange meaning that there is
no stimulus value preference once no information can bedatto

The system can be stabilized by limiting the upper stimuarge to its asymptotic
maximumL}®=0.001, i.e., the response range is zero if stimulated corgtayt 12~

alr
The result is presented in Fig. 7. The temporal detail of tmewus (the time window
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FIGURE 5. Optimal stimulus reconstructioskt = 0.2 s and mak,; = 0.1 uM. The three plots show
(from top): the sample stimulus course, the response ofyiemR*, and the corresponding obtainable
informationlyy:. The maximum stimulus value is chosen high enough to showetinge accepted by the
system at the selected temporal detail level. Initiallg @ptimal stimulus probability density function
f(Lair) coincides with the exponential probability density butrges towards uniform distribution. The
obtainable informatiomyy,; decreases quickly due to the effect of memory. After2.2 s no information
is encoded. The effect of memory therefore disables higligion coding for a prolonged period of time.

At) is set to 0.4s. We see that though the performance is staletime obtainable
information is always below 12 bits and the full encodingaty is never used. The
optimal stimulus probability density is also stable in tiniess shape resembles the
uniform probability density function, nevertheless it iglstly skewed towards higher
values.

| ntermittent stimulation

The sample optimization process illustrated in the previexamples was carried out
under the condition of signal presented in every time windanother possibility to
obtain stable performance and to avoid saturation effedis ieave the stimulus range
virtually unrestricted and let some time windows to contamnsignal The fraction of
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FIGURE 6. Optimal stimulus probability density functiodgL ;) for the case of persistent stimulation
with unrestricted concentration values in Fig. 5. The aifi(La;) which corresponds to maximal infor-
mation transfer can be roughly approximated by the expdademt better by the log-normal probability
density function. The finaf (L) when no information is transferred is uniform over the whetlenulus
range.

the total recording time where the signal is present is dalieermittency and it is well
known that for natural signals its value is very low, almdstagys less than 50 % [7, 8].
Murlis et al. [10] report intermittency of naturally dispexd odorant plume as low as
10% or 20 % in the range of meters from the source.

The final example shows a possibility to predict the optiméiimittency value. We
are interested in encoding the signal with maximum sergitivhenever possible. This
condition sets the limits on the recovery time needed after particular stimulus is
presented. Whenever the obtainable information decreades i1 bits (the threshold
for optimal performance) we let the following time windowsntain no signal until
lopt > 11.5bits again. The intermittency allows the system to "resatf perform in
optimal state again. The result ot = 0.4 s and_1®*= 0.03uM is shown in Fig. 8. The
optimal stimulus probability density function is stabletime (whenever the stimulus
Is present) and can be described by the exponential praiyad@nsity function (14),
this time withA ~ 0.005uM. The intermittency predicted in this case is 7 %. However,
the intermittency value is directly dependent on the thokskalue oflyy for optimal
performance and the threshold value for zero signal.
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FIGURE 7. Reconstruction of optimal stimulusAt = 0.4s andL® = 0.1uM. The upper range of
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stimulus is limited by the asymptotic maximum in order tdodliae the performance of the system under
persistent stimulation. However, the obtainable infoforats always below 12 bits and the full encoding
capacity is never used.

DISCUSSION

Itis impossible to characterize the optimal stimulus dsition without restricting either
the maximum pheromone concentration or by considering rikermittent nature of
stimulation, since the performance of the system may beablesin time, see Fig. 5.
We discuss the two possible considerations separately:

1. The signal is present all the time but its upper bound istdidy which prevents
the responses from saturation (Fig. 7). The optimal prditaldensity function
is skewed towards higher stimulus values depending on thed & temporal
detail At. However, continuous stimulation with higher stimulus niegd to the
saturation of activated states, decrease in transferfedmation and consequent
loss of correct direction of flight for the insect. Such sitoas have been observed
close to the source [22] leading to flight "arrestment” of thalenmoths. This
behavioral change can be explained using the obtainedse€uice the transferred
information decreases to zero, there is no way for the anim&tll whether it
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FIGURE 8. Reconstruction of optimal stimulus including intermittgnAt = 0.4s and makgj =
0.3uM. The periods of zero signal are predicted by the model utigercondition of optimal signal
coding, so the system performs optimally afd.,;) is stable in time (whenever the signal is present).
The optimal stimulus probability density function is débed by the exponential probability density. The
resulting intermittency factor is 7 %.

is flying in the odorant plume or in a clean air. The observeay pattern and
counterturns then lead to decrease in the stimulus valuetaiite reset of the
coding process. It has been observed [23] that after exityestong pheromone
stimulation the recovery time may take up to minutes.

2. The upper bound of the signal is unrestricted but the sigr@ghly intermittent
(Fig. 8). We found that the shape of optimal stimulus prolighdensity can be
well approximated either by the exponential or log-normaldels. This is in full
agreement with experimental data [7, 12, 9]. The intermayas characteristic for
natural signals [10]. The values of intermittency predidd¢ our model are rather
in the lower range usually observed in experimental dataZQ06 reported by
Jones [7], 10-40 % by Murlis et al. [10] depending on the expental conditions).
The value obtained by our method 7 %) is mainly due to the condition of optimal
performance whenever non-zero stimulus is present. Tleslbid value for zero
signal also affects the intermittency factor greatly (#ffects the experimental data
as well [7, 9]). Another (hypothetic) possibility lies in meorapid deactivation of



the receptors.

The coding range is widest if the initial concentration ofivaated receptor&" is zero.
In other words the first stimulus encounter is coded with fipescision and the situa-
tion progressively worsens (Fig. 5). This observation sbaonfirmed experimentally,
though not directly, from the electroantennographic mesmsents of pheromone plume
structure. Baker and Haynes [11] found, that after the burstimulus is encountered
only several first peaks may be followed by the response.

CONCLUSIONS

We find that the optimization of information transfer in thedel of the odorant re-

ceptor is complicated by the "memory effect” and the respsasaration. If we leave

the range of possible stimulus intensities unrestrictea thtermittency must be taken
into account. The stimulus probability density functioattinaximizes the information

transfer can be well approximated by the exponential motiéinis in agreement with

experimental data. The predicted intermittency is in tlveelorange of experimentally

observed values. The obtained results are put into comelgmae with behavioral ob-

servations, namely the upwind flight arrestment reportdebimogeneous plume clouds
or very close to the source.

Acknowledgements

This work was supported by Marie-Curie fellowship HPMT-CT82600244 to L.K.,
by ECO-NET 12644PF from French Ministére des Affaires Etéaag, by Research
project AV0Z50110509, Centre for Neuroscience LC554 and bgdémy of Sciences
of the Czech Republic Grants (1IET400110401 and KJB100110701).

REFERENCES

S. LaughlinZ Naturforsch36, 910-912 (1981).

J. Atick,Network: Comp Neur Sy 213-251 (1992).

W. Bialek, and W. G. OwerBiophys J58, 1227-1233 (1990).

J. Hateren) Comp Physiol A71, 157-170 (1992).

E. P. Hornstein, D. C. O’Carroll, J. C. Anderson, and S. 8udhlin,Proc Biol Sci267, 2111-2117

(2000).

S. B. LaughlinVision Res36, 1529-1541 (1996).

C. Jones) Hazard Mat7, 87-112 (1983).

J. Murlis, “Odor plumes and the signal they provide Jneect Pheromone Research: New Directions

edited by R. Carde, and A. Minks, Chapman and Hall, New Yo#896l pp. 221-231.

9. K. Mylne, and P. MasorQ J Roy Meteo Sotl7, 177-206 (1991).

10. J. Murlis, M. Willis, and R. Cardé>hysiol EntomoR5, 211-222 (2000).

11. T. Baker, and K. HayneBhysiol Entomoll4, 1-12 (1989).

12. K. Mylne, “Experimental Measurements of Concentrafiturctuations,” inAir Pollution Modelling
and Its Application VI) edited by H. van Dopp, Plenum Press, New York, 1988, pp. 565

13. J. Kennedy, A. Ludlow, and C. Sandexsture288, 475-477 (1980).

14. M. Willis, and T. BakerPhysiol Entomob, 341-358 (1984).

ONo ghrwbhrE



15.

17.
18.
19.
20.
21.

22.
23.

N. Vickers, and T. Baked, Insect Behaviob, 669—687 (1992).

K. E. KaisslingChem Sense25, 125-150 (2001).

B. Kodadova) Comp Physiol A79, 301-310 (1996).

T. Cover, and J. Thomag&lements of information theoryiley, New York, 1991.

K. E. Kaissling, and J.-P. Rospa@hem Sense29, 529-531 (2004).

K. G. Gurevich, P. S. Agutter, and D. N. Wheatlégll Signall5, 447-453 (2003).

P. Dayan, and L. Abbotf heoretical neuroscience: computational and mathemhbtiwadeling of
neural systemaMIT Press, 2001.

T. Baker, M. Willis, K. Haynes, and P. Phel&hysiological entomolog$0, 257—265 (1985).

C. ZackSensory Adaptation in the Sex Pheromone Receptor Cellsurihd Moths Dissertation,
Ludwig-Maximilians-Universitat, 1979.



