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Abstract. We analyze the first phase of information transduction in themodel of the olfactory
receptor neuron of the male mothAntheraea polyphemus. We predict such stimulus characteristics
that enable the system to perform optimally, i.e., to transfer as much information as possible. Few
a priori constraints on the nature of stimulus and stimulus-to-signal transduction are assumed.
The results are given in terms of stimulus distributions andintermittency factors which makes
direct comparison with experimental data possible. Optimal stimulus is approximatelly described
by exponential or log-normal probability density functionwhich is in agreement with experiment
and the predicted intermittency factors fall within the lowest range of observed values. The results
are discussed with respect to electroantennogram measurements and behavioral observations.
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INTRODUCTION

The main task of neuronal sensory systems is to "encode" information about the animal’s
environment into its internal representation. Physiological reasons limit the range of
neuronal responses and consequently not all stimulus states can be encoded with equal
reliability. The stimulus-response relation describes the reliability of encoding and thus
implicitly provides such stimulus characteristics that maximize the information capacity
of the neuron. One of the first studies of stimulus-response function with respect to
maximizing the information gain was done on large monopolarcells (LMC) in the
compound eye of the fly [1]. The LMC is a graded potential cell which codes the
contrast fluctuations. The contrast levels in natural fly’s habitat were measured by
objective methods (photodiode) and the resulting characteristics were compared with
those predicted from the stimulus-response curve. It was shown that LMCs are adapted
to the animal’s ecology as the natural stimulus maximizes the cells’ performance. The
following studies, e.g., Atick [2], Bialek and Owen [3], Hateren [4], Hornstein et al.
[5], Laughlin [6], confirmed that the natural signals are processed optimally by sensory
systems. Nevertheless, the majority of available studies consider the visual system only.
In this paper we parallel the pioneering work by Laughlin [1], adapting the method to
suit the specificity of invertebrate olfactory system.

Orientation towards food and mate, especially in insects, is an olfactory-controlled
behavior which relies on the detection of odorant moleculesdelivered from the source.
The atmospheric turbulence causes strong mixing of the air and creates a wide spectrum
of spatio-temporal variations in the signal. The largest eddies are hundreds of meters



in extent and may take minutes to pass a fixed point, while the smallest spatial varia-
tions are less than a millimeter in size and lasts for miliseconds only [7, 8]. The mean
concentration of the odorant decreases monotonically withthe distance from the source,
however, the relation for concentration fluctuations and thus for instantaneous magni-
tude of the signal is more complicated. Due to the inhomogenous mixing very high
concentration values can by found in a wide range of distances from the source, though
their frequency decreases with distance [7]. An important characteristics of the detected
signal is its intermittency, i.e., the fraction of time during which non-zero concentrations
are detected. It has been shown [9, 10] that the natural signal is highly intermittent in
a wide range of experimental conditions. The signal is present less than 50 % of the
total time, usually even smaller intermittency is detected, e.g., Murlis et al. [10] re-
port 20 % in measurements of pheromone dispersion in naturalconditions close to the
source. Various types of ion detectors are usually employedfor measurements, though
Baker and Haynes [11], Murlis et al. [10] have also used electroantennogram responses.
The description of the complicated and inhomogeneous structure of the detected odorant
concentrations requires an approximative approach and statistical methods are usually
employed. The probability density function over the whole stimulus range is the most
convenient descriptor of the signal [7, 8, 10, 12, 9].

The variations in the concentration of the stimulus are essential for the insect to locate
the source of the stimulus. The animal loses direction to thesource and its upwind flight
gets "arrested" if it gets into a cloud of homogeneously distributed pheromone [13, 14].
Experiments in tunnels have shown that characteristics like frequency and intensity of
the intermittent stimulus play a key role in maintaining theproper direction of flight
[15]. The insect’s sensory system differs from the ion detector and thus the level of
temporal and spatial detail the receptor neuron perceives is limited by both physical and
biochemical reasons [11, 16, 17]. In other words, not all theinformation pheromone
signal potentially carries can be processed. We analyze thefirst phase of information
transduction in the olfactory receptor of the male mothAntheraea polyphemus. The
external stimulus (the odorant) is given by the temporal concentration of the major
component of the sex pheromone, the (E,Z)-6,11-hexadecadienyl acetate. The response
of the system (the internal signal) is the graded concentration of activated receptor
molecules. This process of transduction represents the first stage in the cascade of events
finally leading to generation of action potential. The detailed analysis of the first phase
provides insight into the information processing at the single-receptor level. We may
paraphrase the fundamental data processing inequality [18]: if some information does
not pass the first stage, it cannot reappear in any sequentialstage of the processing. The
first stage of transduction cascade therefore sets constraints on the final performance of
the receptor.

The goal of this paper is to characterize the performance of the stimulus-to-response
transformation, namely to find and describe the optimal stimulus (or the class of optimal
stimuli) that maximizes the performance. Mathematical basis for this task is provided
by the statistical theory of information and the proposed method can be used in similar
or more general situations. Similarly to LMCs studied in [1] the response of the first-
stage information transduction in the olfactory neuron is agraded signal. Likewise,
the experimental measurements of odorant plume concentration characteristics in the
animal’s habitat were performed by objective devices (ion detectors). The comparison



of predicted and natural stimulus reveals how well the receptor is adapted or "tuned" to
the signals it encounters most often.

METHODS

The model of the odorant receptor

The first stage of information processing in the olfactory sensory neuron is described
by the transformation of the external signal (the odorant concentration in the air) to the
internal signal (the concentration of activated receptors). The model of odorant receptor
we consider here was developed by Kaissling and Rospars [19] and represents a modified
version of the original model developed by Kaissling [16]. The modification has no
impact on the obtained results (verified numerically) though it simplifies the original
model in terms of required parameters and variables. The chemical reactions form the
following chain:

Lair
ki−→ L (1)

L +R
k3−−⇀↽−−
k−3

RL
k4−−⇀↽−−
k−4

R∗ (2)

L +N
k5−−⇀↽−−
k−5

NL
k6−→ P+N. (3)

The network (1)–(3) includes the external ligand (the odorant) Lair, its uptake L and
reversible binding to a receptor R, the reversible change of the complex RL to an
activated state R∗ (the internal signal), a reversible binding of L to a deactivating
enzyme N (see Kaissling and Rospars [19] for details) and an irreversible odorant
deactivation by changing of the complex NL to P+N. The concentrations of the eight
species involved are denoted by square brackets and the values are functions of time.
For simplicity we omit to denote the explicit dependence on the time variablet and
adopt the following notation for the individual concentrations:Lair = [Lair](t), L = [L](t),
R= [R](t), RL = [RL](t), R∗ = [R∗](t), N = [N](t), P = [P](t) andNL = [NL](t).

The total concentration of the receptor molecules,Rtot = R+RL +R∗, does not change
over time as well as the total concentration of the deactivating enzyme,Ntot = N +LN,
remains constant. The evolution of the reactions (1)–(3) intime given the external signal
Lair is fully described by five first order ordinary differential equations (4)–(8) and two



algebraic equations (9) and (10):

dL
dt

= kiLair−k3LR+k−3RL −k5LN+k−5LN (4)

dRL

dt
= k3LR−k−3LR−k4LR+k−4R∗ (5)

dR∗

dt
= k4RL −k−4R∗ (6)

dLN

dt
= k5LN−k−5LN −k6LN (7)

dP
dt

= k6LN (8)

R = Rtot −RL −R∗ (9)
N = Ntot −LN. (10)

The state of the system at any given time,S(t) = {L(t),RL(t),R∗(t),LN(t),P(t)}, is
given by the actual values of the involved variables and we assume that att = 0 the
concentrationsL,RL,R∗,LN andP are zero. The values of parameters were determined
by Kaissling [16] and Kaissling and Rospars [19], we summarize them in Tab. 1.

TABLE 1. Summary of the odorant receptor model pa-
rameters [16, 19].

k3 = 0.209 s−1µM−1 k−3 = 7.9 s−1

k4 = 16.8 s−1 k−4 = 98 s−1

k5 = 4 s−1µM−1 k−5 = 98.9 s−1

k6 = 29.7 s−1 ki = 29000 s−1

Rtot = 1.64µM Ntot = 1 µM

The differential equations (4)–(8) follow the law of mass action for chemical reac-
tions. In reality, the response of the system is not deterministic. The value fluctuates
due to the stochastic effects like spatial inhomogeneitiesin the distribution of reactants.
If the concentrations of reactants are high enough above single-molecular levels then
the fluctuations are relatively small and can be neglected. However, for small doses the
situation is more complicated and the stochastic effects have to be described properly
[20]. In this paper we thus do not investigate the effect of extremely small odorant doses.
The value ofR∗ corresponding to one activated receptor molecule per neuron is approx-
imately 10−6.2 µM [19] which is far below the values considered in this paper.

Optimal stimulus reconstruction

The main task of the first-stage of signal processing in the olfactory receptor neuron is
to transform the input signal (the odorant concentration) into its internal representation
(the concentration of activated receptors). The neuron performs optimally if it preserves
as much information about the input as possible. According to the information theory,
information is transmitted only if the input varies randomly [18]. From this point of
view a homogeneous cloud of odorant would carry zero information. The exact amount



FIGURE 1. The amount of information the neuron can transfer is limitedby the finite range of possible
response states. Furthermore, the minimal stimulus increment that changes the response state is not
constant over whole the stimulus range. The amount of transferred information therefore depends both
on the range of stimulus and on the frequency with which particular concentration values occur. If the
neuron performs optimally then all response states have to be used equally likely, which in turn uniquely
determines the optimal stimulus probability density function (adapted from Laughlin [1]).

of transferred information is determined from the stimulus-response relationship. The
problem therefore lies in relating two signals,Lair (the stimulus) andR∗ (the response).
The information, however, is not transmitted at a time instant, rather we assume that
it is gained within a time interval. Therefore we divide the time axis into "windows"
or "bins" of length∆t, i.e., we do not to consider any temporal details below∆t. The
stimulus is represented by a constant value of concentration Lair in the time window and
the response,ρ, to such stimulation is the average value of activated receptors taken
over the corresponding time windowρ = 〈R∗〉∆t . This simple set-up allows us to test the
performance of the receptor model at different levels of temporal resolution.

The most important factor limiting the information transfer is the bounded range of
responsesρ due to finite number of receptor molecules per neuron. Once the maximum
number of receptor molecules is activated no higher stimulus concentration can be
encoded. Furthermore, the neuron can perceive a change in stimulus value differently
depending on the basal stimulus concentration. The amount of transferred information
therefore depends both on the range of stimulusLair and on the frequency with which
particular concentrations values occur, see Fig. 1. In other words, the description ofLair
in each selected time window is given in terms of probabilitydensity functionf (Lair).

The information theory [18, 21, 1] describes the optimal stimulus characteristics
implicitly: the system performs optimally if all possible response values are used with
equal frequency. In the following we describe the "step-wise" method to obtain such
stimulus characteristics that equalize the output usage. First we compute the reaction of
the system to all possible stimuli in the first time window,(0,∆t), given the zero initial
condition att = 0, see Fig. 2a. For each stimulus the responseρ is the average number
of activated receptors in(0,∆t), Fig. 2b. The relation betweenLair andρ describes the



time

time

∆t

0

00

0

∆t

∆t Lair

Lair

L
a
i
r

R
∗

%

%
f
(L

a
i
r
)

Lmax

air

Lmax

air

Lmax

air

%(Lair)

a

b c

d

FIGURE 2. Stimulus optimization in the first time window(0,∆t). (a) The stimulusLair is a constant
function bounded inside[0,Lmax

air ] (several examples shown). (b) Starting from zero att = 0 the time
development ofR∗ (dashed line) is averaged (ρ) over the first time window (solid line). (c)ρ "encodes"
the stimulus value so the stimulus-response curveρ(Lair) can be constructed. (d) The stimulus-response
curve uniquely determines such stimulus probability density function f (Lair) that all responsesρ are used
equally likely.

stimulus-response curve,ρ(Lair), Fig. 2c. Conditioned that all responses have to be used
with equal frequency, the stimulus cumulative distribution function can be related to
ρ(Lair). The optimal stimulus probability density functionf (Lair) can be then written as

f (Lair) =
d

dLair

[

ρ(Lair)−ρmin

ρmax−ρmin

]

, (11)

whereρmin resp.ρmax are the minimal resp. maximal response values encountered in
the time window, Fig. 2d. Once the optimal stimulus probability density for the time
(0,∆t) is known we use it to select one stimulus value. The reaction of the system to this
particular stimulus is computed, the state of the systemS at t = ∆t is determined and
we can proceed to the next time window(∆t,2∆t). Note that the information transfer
in this system has a memory, i.e., the current state is affected not only by the current
stimulus but also by the history of stimulation. Therefore the state of the systemS(∆t)
must be taken into account for evaluation of the response in the time window(∆t,2∆t).
The optimization proceeds similarly in(∆t,2∆t): we again compute the time course
of the activated receptor concentration (R∗) and determine their averages (ρ) under all
possible stimulus conditions, Fig. 3. The optimal stimulusprobability density function
in (∆t,2∆t) is determined again by employing formula (11). After selecting one random
stimulus value the process continues into the following time window. The range ofρ
and the shape off (Lair) may change from one window to another.

The actual amount of transferred information in each step can be estimated from the
available response range. If we divide the range(minρ,maxρ) into n bins (that cannot
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FIGURE 3. Stimulus optimization in the second time window(∆t,2∆t). One particular stimulus value
is drawn randomly fromf (Lair) reconstructed in the first time window(0,∆t). The corresponding response
and the state of the systemS(∆t) are computed. In the second time window(∆t,2∆t) the responses and
their averages are determined again for all stimulus values(taking into account the state system att = ∆t).
The stimulus-response curve and the corresponding stimulus probability density function are determined
and the process is carried into the next time window.

be divided any further) the amount of information which can be transferred is log2n bits
[18]. For each time window we thus compute the estimate of transferred information,
here denoted as obtainable information,Iobt, in bits as

Iobt = log2

(

maxρ −minρ
∆ρ

)

, (12)

where the division factor∆ρ is set prior to the the optimization process. We adopt the
convention thatIobt = 0 if the coding range is smaller than∆ρ. The factor∆ρ corre-
sponds to the minimal number of activated or deactivated receptor molecules the system
perceives as a change. We set the minimal value to 100 molecules which consequently
gives∆ρ = 10−4.2 µM. Substituting for∆ρ into formula (12) and taking into account
that the maximal concentration of activated receptors isR∗ ≈ 0.24µM [19] yields the
maximum information gainIobt ≈ 12 bits. We furthermore assume that∆ρ does not de-
pend on the length of the time window.

RESULTS

Single-pulse stimulation

First we examine the behavior of the model under the stimulation with a single pulse
of unlimited duration. Setting the left-hand sides of equations (4)–(8) equal to zero gives



the asymptotic value ofR∗ as a function of the constantLair,

R∗ = (1−Q4)Rtot

[

Kd3Q4

Km5,6

(

k6Ntot

kiLair
−1

)

+1

]−1

, (13)

[19], whereKd3 = k−3/k3 corresponds to the dissociation constant of ligand and re-
ceptor,Q4 = k−4/(k4 + k−4) and Km5,6 = (k−5 + k6)/k5 are the Michaelis constants
of the ligand and the deactivating enzyme. Using the values from Tab. 1 we find that
the dose-response relationship (13) is almost perfectly linear with the maximum con-
centration of the activated receptors maxR∗ = (1−Q4)Rtot ≈ 0.24µM [19]. The mini-
mal concentration of infinite duration that activates the maximal number of receptors is
Lair ≈ 0.001µM.

Next we examine the response of the system to a constant stimulation of limited
duration. In Fig. 4 we see the time course ofR∗ given several different values ofLair from
0.0001µM to 0.005µM. The stimulation starts att = 1 s and lasts for 1 s. We see, that the
system responds differently even for stimulus concentrations higher than the minimum
concentration which evokes asymptotically maximum numberof activated receptors (the
asymptotic maximumLair = 0.001µM). In other words, valuesLair > 0.001µM can be
distinguished only if the duration of the stimulus pulse decreases. However, the duration
of the falling phase gets progressively longer which has important consequences on
distinguishing details in sequences of large stimulus values. During the simulations we
avoid extremely small doses of odorant due to the validity ofthe mass action law. For the
same reason we do not set the length of the time window∆t close to zero. The smallest
value we allow is∆t = 0.2 s which is near the upper value of the experimentally observed
range [17]

Multi-pulse stimulation

First we employ the optimization process directly, i.e., under the condition of stimulus
being permanent but varying. In the first example we set the level of temporal detail to
∆t = 0.2 s. The upper bound on stimulus value isLmax

air = 0.1µM, which is 1000× the
concentration sufficient to reach the asymptotic maximum and therefore the stimulus
range can be considered unrestricted.

The results are presented in Fig. 5. The plots show the state of the system in each time
window (time is on the horizontal axis). The first row shows the optimized stimulus
value which is randomly drawn from the optimal probability density function in each
time window. The chosen stimulus value in turn determines the behavior of the system
in the next time window due to the memory effect. The second row is the reaction of the
system to the optimized stimulus and the third row shows the transferred (or obtainable)
information. We see, that the performance of the system is not stable in time, i.e., the
obtainable informationIobt monotonically decreases. The reason lies in the prolongation
of the falling phase ofR∗, see Fig. 4. The response range is initially bounded from
below by minρ = 0µM (we start from zero initial condition) but due to the memory
effect the actual value of minρ increases in subsequent time windows. The upper limit
of responses, maxρ, does not change because it is given by the physical properties of
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the system. Consequently, the response range decreases andIobt finally (and inevitably)
reaches zero no matter how large is the stimulus value. The instability of the system is
reflected also in the time development of optimal stimulus probability density function,
f (Lair), see Fig. 6. Stimulus probability density functionf (Lair) in the first time window,
which corresponds to maximalIobt, can be approximated by the exponential probability
density function

f (Lair) =
1
λ

exp(−Lair/λ ), (14)

with mean valueλ = 0.03µM. A better fit, in this case, is provided by the log-normal
distribution

f (Lair) =
1

xσ
√

2π
exp

[

−(lnx−µ)2

2σ2

]

, (15)

with σ = 1.5 µ = −3.6 and mean value 0.08µM. In subsequent time windowsf (Lair)
transforms into uniform distribution over the whole stimulus range meaning that there is
no stimulus value preference once no information can be encoded.

The system can be stabilized by limiting the upper stimulus range to its asymptotic
maximumLmax

air = 0.001, i.e., the response range is zero if stimulated constantly by Lmax
air .

The result is presented in Fig. 7. The temporal detail of the stimulus (the time window
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FIGURE 5. Optimal stimulus reconstruction:∆t = 0.2 s and maxLair = 0.1µM. The three plots show
(from top): the sample stimulus course, the response of the systemR∗, and the corresponding obtainable
informationIobt. The maximum stimulus value is chosen high enough to show therange accepted by the
system at the selected temporal detail level. Initially, the optimal stimulus probability density function
f (Lair) coincides with the exponential probability density but changes towards uniform distribution. The
obtainable informationIobt decreases quickly due to the effect of memory. Aftert = 2.2 s no information
is encoded. The effect of memory therefore disables high-precision coding for a prolonged period of time.

∆t) is set to 0.4 s. We see that though the performance is stable now the obtainable
information is always below 12 bits and the full encoding capacity is never used. The
optimal stimulus probability density is also stable in time. Its shape resembles the
uniform probability density function, nevertheless it is slightly skewed towards higher
values.

Intermittent stimulation

The sample optimization process illustrated in the previous examples was carried out
under the condition of signal presented in every time window. Another possibility to
obtain stable performance and to avoid saturation effects is to leave the stimulus range
virtually unrestricted and let some time windows to containno signal The fraction of
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the total recording time where the signal is present is called intermittency and it is well
known that for natural signals its value is very low, almost always less than 50 % [7, 8].
Murlis et al. [10] report intermittency of naturally dispersed odorant plume as low as
10 % or 20 % in the range of meters from the source.

The final example shows a possibility to predict the optimal intermittency value. We
are interested in encoding the signal with maximum sensitivity whenever possible. This
condition sets the limits on the recovery time needed after one particular stimulus is
presented. Whenever the obtainable information decreases below 11 bits (the threshold
for optimal performance) we let the following time windows contain no signal until
Iobt > 11.5 bits again. The intermittency allows the system to "reset" and perform in
optimal state again. The result for∆t = 0.4 s andLmax

air = 0.03µM is shown in Fig. 8. The
optimal stimulus probability density function is stable intime (whenever the stimulus
is present) and can be described by the exponential probability density function (14),
this time withλ ≈ 0.005µM. The intermittency predicted in this case is 7 %. However,
the intermittency value is directly dependent on the threshold value ofIobt for optimal
performance and the threshold value for zero signal.
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FIGURE 7. Reconstruction of optimal stimulus :∆t = 0.4 s andLmax
air = 0.1µM. The upper range of

stimulus is limited by the asymptotic maximum in order to stabilize the performance of the system under
persistent stimulation. However, the obtainable information is always below 12 bits and the full encoding
capacity is never used.

DISCUSSION

It is impossible to characterize the optimal stimulus distribution without restricting either
the maximum pheromone concentration or by considering the intermittent nature of
stimulation, since the performance of the system may be unstable in time, see Fig. 5.
We discuss the two possible considerations separately:

1. The signal is present all the time but its upper bound is limited, which prevents
the responses from saturation (Fig. 7). The optimal probability density function
is skewed towards higher stimulus values depending on the level of temporal
detail ∆t. However, continuous stimulation with higher stimulus maylead to the
saturation of activated states, decrease in transferred information and consequent
loss of correct direction of flight for the insect. Such situations have been observed
close to the source [22] leading to flight "arrestment" of the male moths. This
behavioral change can be explained using the obtained results. Once the transferred
information decreases to zero, there is no way for the animalto tell whether it
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is flying in the odorant plume or in a clean air. The observed zigzag pattern and
counterturns then lead to decrease in the stimulus value andto the reset of the
coding process. It has been observed [23] that after extremely strong pheromone
stimulation the recovery time may take up to minutes.

2. The upper bound of the signal is unrestricted but the signal is highly intermittent
(Fig. 8). We found that the shape of optimal stimulus probability density can be
well approximated either by the exponential or log-normal models. This is in full
agreement with experimental data [7, 12, 9]. The intermittency is characteristic for
natural signals [10]. The values of intermittency predicted by our model are rather
in the lower range usually observed in experimental data (10–20 % reported by
Jones [7], 10–40 % by Murlis et al. [10] depending on the experimental conditions).
The value obtained by our method (≈ 7%) is mainly due to the condition of optimal
performance whenever non-zero stimulus is present. The threshold value for zero
signal also affects the intermittency factor greatly (thisaffects the experimental data
as well [7, 9]). Another (hypothetic) possibility lies in more rapid deactivation of



the receptors.

The coding range is widest if the initial concentration of activated receptorsR∗ is zero.
In other words the first stimulus encounter is coded with finest precision and the situa-
tion progressively worsens (Fig. 5). This observation is also confirmed experimentally,
though not directly, from the electroantennographic measurements of pheromone plume
structure. Baker and Haynes [11] found, that after the burst of stimulus is encountered
only several first peaks may be followed by the response.

CONCLUSIONS

We find that the optimization of information transfer in the model of the odorant re-
ceptor is complicated by the "memory effect" and the responsesaturation. If we leave
the range of possible stimulus intensities unrestricted then intermittency must be taken
into account. The stimulus probability density function that maximizes the information
transfer can be well approximated by the exponential model which is in agreement with
experimental data. The predicted intermittency is in the lower range of experimentally
observed values. The obtained results are put into correspondence with behavioral ob-
servations, namely the upwind flight arrestment reported inhomogeneous plume clouds
or very close to the source.
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