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Abstract

The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental
processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle
to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The
pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural
stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone
plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the
stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g.,
the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course,
and the intermittency, are in good agreement with those measured experimentally in the field. These results should
stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and
on the plume characteristics that are most informative for the ‘sniffer’. Both aspects are relevant to the design of olfactory
sensors for odour-tracking robots.
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Introduction

According to the ‘efficient-coding hypothesis’ [1], the sensory

neurons are adapted to the statistical properties of the signals to

which they are exposed. Because not all signals are equally likely,

sensory systems should best encode those signals that occur most

frequently. This idea was first tested by Laughlin [2] in a

pioneering study of first order interneurons in the insect

compound eye, the large monopolar cells, which code for contrast

fluctuations. He showed that the response function of these graded

potential cells, measured by intracellular recording, approximates

the cumulative probability distribution function of contrast levels

measured in the natural fly’s habitat with a photodiode.

The efficient coding hypothesis has been much studied in the

visual system [2–7]; reviewed in [8] and to a lesser extent in the

auditory system [9,10]. However, it has been rarely discussed in

the context of olfactory sensory neurons [11,12].

With a nonlinear stimulus-response function, the neuron

encodes differently an equal change in stimulus intensity

depending on the actual concentration (Figure 1A). The key

question is, how should a neuron weigh its input so as to transfer as

much information as possible? Information theory [13,14]

provides the solution. In the simplest scenario (with no other

constraints on the response range), the inputs should be encoded

so that all responses are used with the same frequency [2]. The

optimal stimulus statistics is given by the stimulus probability

distribution (Figure 1B), which is obtained directly from the

stimulus-response curve. This simple solution, however, does not

hold in the case of olfaction because of the large differences in

reaction time at different stimulus concentrations. This is a major

difference with respect to Laughlin’s approach, in which all

response states were assumed to be equiprobable.

In this paper, we paralleled Laughlin’s approach [2], adapting

his method to suit the specificity of olfaction. We chose a well

studied olfactory receptor neuron, the pheromone receptor neuron

of male moths, to investigate its adaptation to the natural signal it

processes, the sexual pheromone emitted by conspecific females.

To our knowledge this neuron and its stimulus provide the only

example in olfaction for which enough data are available on the

odorant plume and the neuron transduction mechanisms to make

a quantitative comparison possible between the predicted

optimum signal and the natural signal.

Flying male moths rely on the detection of pheromone

molecules released by immobile conspecific females for mating.

The atmospheric turbulence causes strong mixing of the air and

creates a wide spectrum of spatio-temporal variations in the

pheromonal signal (Figure 2). The largest eddies are hundreds of

metres in size and may take minutes to pass a fixed point, while

the smallest spatial variations are less than a millimetre in size

and last for milliseconds only [15,16]. Due to inhomogeneous

mixing, a very high concentration of pheromone can be found in

a wide range of distances from the source, though their frequency

decreases with distance [15]. Because of its complicated and

inhomogeneous structure, the description of the plume must rely

on statistical methods, notably the histogram of the fluctuations in

pheromone concentration [15–19]. These fluctuations are
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essential for the insect to locate the source of the stimulus.

Experiments in wind tunnels showed that moths would not fly

upwind in a uniform cloud of pheromone [20–22]. Character-

istics like the frequency and intensity of the intermittent

stimulation play a key role in maintaining the proper direction

of flight [23].

The goal of this paper is to present arguments specifying in

which sense the perireception and reception processes occuring in

pheromone olfactory receptor neurons (ORNs) can be considered

as optimally adapted to their natural stimulus. Although, in the

light of previous studies on similar sensory neurons, the ORN may

be considered a priori as adapted to the pheromone plume, the

exact nature of this adaptation and its proof are more challenging

questions. Despite widespread agreement that environmental

statistics must influence neural processing [24], precise quantifi-

cation of the link proved difficult to obtain [8]. So, the main aim of

this paper was to identify the specific characteristics to which the

pheromone ORN is adapted and to provide quantitative evidence

for their adaptation. We proceeded in two steps. First, using the

statistical theory of information, we predicted the characteristics of

the optimal pheromonal signal that the ORN is best capable of

encoding based on the properties of the initial steps of signal

transduction. Second, we compared these theoretically-derived

properties with statistical characteristics most often determined in

experimental measurements, i.e., the probability distribution

function of the fluctuations in pheromone concentration, the

spectral density function of the stimulation course and the

intermittency of the odorant signal.

Results

Model of Pheromone Reception
Pheromone components are detected by specialized ORNs

located in the male antenna. We considered a specific ORN type

of the moth Antheraea polyphemus detecting (E,Z)-6,11-hexadeca-

dienyl acetate, the major component of the sexual pheromone in

this species, for which a wealth of precise information is available

(reviewed in [25]). The pheromone molecules are adsorbed on

the cuticle, diffuse inside the sensory hair to the neuron

membrane and are thought to be enzymatically deactivated

[25] then degraded. The initial cell response is triggered by the

binding of the pheromone molecules to the receptor molecules

borne by the dendritic membrane and the ensuing receptor

activation. A cascade of events follows, amplifying this initial

response and finally leading to the generation of a train of action

potentials conveyed to the brain. The pheromone concentration

at each instant determines the ORN response. However the

extreme temporal variability of pheromone concentration in

plumes prevents a full description of stimulus-response relation-

ships by direct electrophysiological measurements. For this

reason we based our study on a model of perireception and

reception processes describing how any stimulus (concentration

of pheromone in the air) is transformed into the receptor

response (concentration of activated receptors). This model,

based on extensive biochemical, radiochemical and electrophys-

iological experiments, was developed by Kaissling and coworkers

Figure 1. Amount of information transferred by a neuron in the
case where all response states are equiprobable. (A) Stimulus-
response function. The amount of transferred information is limited by
the finite range of possible response states. Due to the non-linearity of
the stimulus-response function, each response state encodes different
relative changes in stimulus intensity. (B) Corresponding probability
density function (pdf). Maximum information is transferred if all
response states are used equally, i.e., if the area under the stimulus
pdf is equal for each response state, as shown. In the limit of vanishingly
small response states, the optimal stimulus CDF corresponds to the
(normalized) stimulus-response function (adapted from [2]).
doi:10.1371/journal.pcbi.1000053.g001

Author Summary

Efficient coding is an overarching principle, well tested in
visual and auditory neurobiology, which states that
sensory neurons are adapted to the statistical character-
istics of their natural stimulus - in brief, neurons best
process those stimuli that occur most frequently. To assess
its validity in olfaction, we examine the pheromone
communication of moths, in which males locate their
female mates by the pheromone they release. We
determine the characteristics of the pheromone plume
which are best detected by the male reception system. We
show that they are in agreement with plume measure-
ments in the field, so providing quantitative evidence that
this system also obeys the efficient coding principle.
Exploring the quantitative relationship between the
properties of biological sensory systems and their natural
environment should lead not only to a better understand-
ing of neural functions and evolutionary processes, but
also to improvements in the design of artificial sensory
systems.

Figure 2. Visualization of a pheromone plume. The figure is
extracted and adapted from a digitized image of a smoke plume filmed
in a wind tunnel 1 m across and 2 m long with source on the left side
[43]. Though the average pheromone concentration in the air decreases
with distance, high pheromone concentrations can be found relatively
far from the source due to the imperfect mixing of odorant with air. The
signal detected by both moving and stationary detectors is therefore
always intermittent, consisting of pulses of relatively undiluted
pheromone.
doi:10.1371/journal.pcbi.1000053.g002
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[25,26]. It involves the following system of chemical reactions:

Lair

ki

L ð1Þ

LzR
k{3

k3

RL
k{4

k4

R� ð2Þ

LzN
k{5

k5

NL

k6

PzN ð3Þ

The network includes (1) the translocation of the ligand from the

air (input pheromone signal Lair) to the hair lumen (L); (2) the

reversible binding of L to receptor R and the reversible change

of the complex RL to an activated state R* (output signal); (3) the

reversible binding of L to a deactivating enzyme N and its

deactivation to product P which is no longer able to interact with

the receptor.

The concentrations of individual components in the network 1–

3 are denoted by square brackets and the concentration values are

functions of time. For simplicity we omit here the explicit

dependence on the time variable t and adopt the following

notation for the individual concentrations: Lair = [Lair](t), = [L](t),

R = [R](t), RL = [RL](t), R* = [R*](t), N = [N](t), P = [P](t) and

NL = [NL](t). The evolution of the system 1–3 in time given the

external signal Lair is fully described by five first order ordinary

differential Equations 4–8 and two conservation Equations 9 and

10:

dL

dt
~kiLair{k3LRzk{3RL{k5LNzk{5NL ð4Þ

dRL

dt
~k3LR{k{3RL{k4RLzk{4R� ð5Þ

dR�

dt
~k4RL{k{4R� ð6Þ

dNL

dt
~k5LN{k{5NL{k6NL ð7Þ

dP

dt
~k6NL ð8Þ

R~Rtot{RL{R� ð9Þ

N~Ntot{NL: ð10Þ

Equations 9 and 10 follow from the fact that the total

concentration of the receptor molecules, Rtot = R+RL+R*, as well

as the total concentration of the deactivating enzyme, Ntot = N+NL,

do not change over time. We assume that at t = 0 the

concentrations L, RL, R*, NL and P are zero. The parameter

values, derived from extensive experimental investigations, are

given in Table 1.

Basic Stimulus-Response Properties
The efficiency of information transfer in the system 1–3 depends

critically on its stimulus-response relationship under single and

repeated stimulus pulses. For transferring as much information as

possible the response states must be optimally utilized. The actual

amount of information transferred is limited by biological

constraints. In the system studied, information transfer from Lair

(stimulus) to R* (response) presents three main limitations.

First, it is limited by the finite number of receptor molecules per

neuron which places an upper bound on the range of responses.

Whatever the pheromone concentration (height of the step) the

concentration of activated receptors cannot exceed R�max~

0:24 mM at any time [26].

Second, temporal details in the stimulus course shorter than a

certain lower limit Dt cannot be analyzed by the system. The

smallest period of stimulation of the model studied here is 0.4 s

[26,27], in agreement with experimental measurements [28,29].

With smaller periods, at higher frequencies, the amplitude of the

oscillations of R* becomes too small to be effective. Therefore we

set Dt = 0.4 s. Two successive pheromone pulses separated by a

time shorter than Dt cannot be distinguished.

Third, information transfer in time is also limited by the

response duration, which depends on the deactivation rate of the

activated receptors. The time course of R* in response to

stimulations of different heights Lair and limited duration (0.4 s)

is shown in the inset of Figure 3A. The concentration of activated

receptors rises at first, reaches RD
* at the end of the stimulus pulse,

i.e., RD
* = R*(t =Dt), and finally decreases. We consider RD

* as the

‘‘response’’ of the system and for the sake of simplicity in the

following, we omit index D. The duration of the falling phase

(receptor deactivation) gets progressively longer for higher

pheromone concentrations. This deactivation takes typically much

longer than the time resolution parameter Dt. The falling phase is

often described by the half-fall time, t(R*), which is the time

required for R*(t) to decrease from R* to R*/2. The relationship

Table 1. Parameters of the perireceptor and receptor model.

Parameter Value Unit Parameter Value Unit

k3 = 0.209 s21mM21 k23 = 7.9 s21

k4 = 16.8 s21 k24 = 98 s21

k5 = 4 s21mM21 k25 = 98.9 s21

k6 = 29.7 s21 kI = 29,000 s21

Rtot = 1.64 mM Ntot = 1 mM

From [25,26].
doi:10.1371/journal.pcbi.1000053.t001
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between R* and t(R*) is shown in Figure 3A. A unique value of R*

corresponds to each value Lair, which defines the stimulus-response

curve (Figure 3B). The fact that the deactivation of activated

receptors is relatively slow suggests that the reception system

cannot encode a long sequence of pheromone pulses in arbitrarily

quick succession. This observation plays an important role in the

definition of the optimal stimulus course.

Optimal Stimulus Course
In the simplest scenario (with no other constraints on the response

range and stimulus-independent additive noise), the inputs should be

encoded so that all responses are used with the same frequency [2,30].

The optimal stimulus is thus described by its probability distribution

function, which is obtained directly from the stimulus-response curve.

Due to the large differences in reaction times at different stimulus

concentrations, all response values R* from 0 to 0.24 mM cannot be

considered as equally ‘‘usable’’ (the long falling phases decrease the

efficacy of the information transfer). Therefore, the longer the half-fall

time of a given response R* (i.e. the greater concentration R* is) the

less frequent it must be. The particular form of the optimal response

cumulative probability distribution function (CDF), FR(R*), which was

determined by maximizing the information transferred and mini-

mizing the average half-fall time (see Methods), is shown in Figure 3C.

Then, based on the three factors mentioned (stimulus-response curve,

Figure 3B; time resolution Dt = 0.4 s; and optimal response

probability distribution, Figure 3C), an optimum stimulus course in

time can be predicted as explained in the Methods section.

Examples of predicted temporal fluctuations in pheromone

concentration are shown in Figure 4 at various time scales and

compared to experimental observations. Even though the time

resolution of the system studied here is only 0.4 s, it seems sufficient to

capture the main bursts of pheromone (see the 10 s sample in

Figure 4A). The comparison can be made more precise by describing

statistically the heights and occurences in time of the pulses.

Predicted Temporal Pattern of Pulses
Concerning temporal aspects, the bursts of non-zero signal do

not occur at periodic intervals but appear randomly. An important

descriptor of the temporal structure is the intermittency [15,16],

which is the fraction of total time when the signal is present. The

intermittency of the predicted optimal stimulus is 20%, which is in

relatively good agreement with experimental data. It has been

shown using various types of ion detectors [17,19] as well as

electroantennogram responses [17,31], that the natural signal is

always present less than 50% of the total time, and usually smaller

values are found. The average intermittency values reported are

10–20% [15] and 10–40% [16,17], depending on the experimen-

tal conditions, such as the detector size or the global meandering

of the plume (see Discussion).

Predicted Concentrations of Pheromone Pulses
Concerning pulse height, the overall character of the predicted

stimulus course is that pulses of high concentration are much rarer

than those of low concentration. This feature of the predicted

stimulus can be best quantified by the CDF, P(Lair), of the stimulus.

The shape of the CDF is one of the most important properties for

comparing theoretical predictions to experimental measurements

because it describes the relative distribution of odorant concen-

trations throughout the plume. In fact, because measuring

pheromone concentration in the field is not presently feasible

[17], pheromone molecules must be replaced by measurable

tracers. Relative quantities are valid for both pheromones and

tracers (see Discussion). They are the only quantities known

experimentally for pheromone plumes. So, although our model

predicts them, we cannot compare values of Lair to actual

measurements.

Given the definition of the optimal stimulus, function P(Lair) can

be directly computed (see Methods). Figure 5 shows a comparison

between experimentally measured (A) and predicted (B) concen-

tration CDF. The optimal pheromone concentration CDF

(Figure 5B, solid line) is not known in analytical form but it can

be well approximated by an exponential CDF (Figure 5C, dashed

line). The differences between the predicted and true exponential

shape can be considered as non-significant, namely, very high

values of Lair are predicted to be less frequent than in the

exponential model. The exponential CDF is in agreement with

experimental CDF (Figure 5A), [18,19,32,33] and holds well

especially for observations closer to the source (less than 100 m).

Although the precise form of the CDF varies with distance from

the plume centerline [19] and may be affected by the

measurement technique, the shape is always highly skewed.

Other predicted relative quantities (peak-to-mean ratios,

dimensionless concentrations Lair/ÆLairæ) were compared with their

Figure 3. Response properties of the olfactory reception model. (A) Temporal properties. Inset: concentration of activated receptors, R*(t), as
a function of time for single pulses of pheromone of fixed duration (0.4 s) and different intensities Lair (1, 5, 10 and 20 nM). The maximum of R*(t) is
reached slightly after the end of the stimulation. The prolongation of the falling time with increasing intensities is quantified by the half-fall time, t, as
a function of R* at the end of stimulation. (B) Stimulus-response function R*(Lair) for single pulses of the same duration as in (A). This curve depends on
the temporal resolution and the choice of the response intensity. (C) Optimal cumulative distribution function of the responses, FR(R*), determined by
maximizing the information transfer per average half-time (see Methods). The functions R*(Lair) and FR(R*) were used for calculating the optimal
stimulus probability distribution (shown in Figure 5B).
doi:10.1371/journal.pcbi.1000053.g003
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experimental counterparts. The results, summarized in Table 2,

show that the predicted statistical properties of the stimulus are not

contradicted by the experimental observations.

Spectral Density Functions of the Stimulus Course
Spectral density functions of the concentration time course,

which analyze the contribution of various frequencies to the

overall stimulus course, characterize other properties of the plume

which are independent on the nature of the odorant (pheromone

or ion source) [19,33]. Furthermore, spectral density function

represents a point of view different from the concentration

probability distribution.

Several spectral density functions, shown in Figure 6, were

calculated from the predicted optimal pheromone stimulation (see

Methods). The spectral shapes seem to be almost flat from 0.02 Hz

to 0.2 Hz with a decreasing slope close to 22/3 above 0.2 Hz.

The same slope 22/3, which is theoretically predicted by the

inertial subrange theory [19], was reported in the spectral densities

obtained from measurements close to the source (less than 100 m),

in the range 0.1 Hz (or 0.5 Hz, depending on records) to 1 Hz

[19,33], although the precise range may depend on the technique

of measurement.

Discussion

The goals of this study were to determine to which extent early

olfactory transduction in olfactory receptor neurons can be

considered adapted (in the evolutionary sense) to odorant plumes

and to specify the plume characteristics to which it is adapted. The

formulation and resolution of this problem benefited from

successful studies of efficient sensory coding undertaken in the

field of vision and audition. However, transposition from these

sensory modalities to olfaction is not straigthforward, which may

explain in part why it has not been attempted earlier. Specificities

of olfaction concern both the odorant plume and the sensory

system.

Odor Plumes
In theory and in practice, the quantitative description of odor

plumes and their spatiotemporal distribution is less straightfor-

ward than that of visual or auditory scenes. Contrary to light

Figure 4. Qualitative comparison of reconstructed optimal pheromone stimulations Lair with experimentally-measured fluctuations
in concentration of tracers (in arbitrary units), at various time scales. 10 s (A), 50 s (B) and 350 s (C). Temporal positions of pulses in
experiments and simulations do not need to coincide. Quantitative comparisons are done in Figures 5 and 6 and in Table 2. (A) Ion signal measured
using Langmuir probe in the field, 2.5 m from the source (top, from [17]); theoretical prediction (bottom) shows reasonable correspondence: the
temporal resolution Dt = 0.4 s is sufficient to capture the main bursts of pheromone. (B) Ion signal, averaged over 330 ms, distance up to 30 m from
the source (top, from [39]); the predicted signal (bottom) captures the overall character of the natural stimulation. (C) Propylene source, 67 m from
the source (top, from [18]); the longest pauses (over 1 minute) are caused by the global meandering of the plume: they are absent in the prediction
(bottom) because moths are assumed to stay within the pheromone plume.
doi:10.1371/journal.pcbi.1000053.g004
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and sound, for which the physical description is essentially

complete, the turbulent phenomena which underlie the plume

characteristics are still an incompletely mastered domain of

physics [34].

In Laughlin’s classical experiment in vision a single time-

independent variable, the contrast level, was measured [2] and

directly compared with experimental data. In olfaction, however, the

odorant concentration (an analogue to the contrast level) is essentially

time dependent which results in a complex optimal stimulus course

(Figure 4). Complexity and time dependence make a meaningful

direct comparison between predictions and experimental records, but

also between different experimental records, impossible. Instead, the

comparison must rely on global, statistical descriptors [15,17,19,33].

We identified 5 such descriptors of odor plumes, actually measured

and usable in the present context (see Table 2), which summarize the

present knowledge on odor plumes.

Moreover, there are no easy-to-use instruments to measure odor

plumes in the field, comparable to luxmeters and microphones.

For example, the absolute pheromone concentration cannot be

easily known in field experiments [17]. This explains why no

experimental values were given for this descriptor in Table 2. In

practice, only ratios of concentrations are presented because they

are independent of the dispersed molecules. The pheromone is

often substituted by an ion or a passive tracer (polypropylene for

example) whose concentration can be measured [15,17,19].

Because both pheromone and tracer compounds in the air are

governed by the same physical laws, the relative (dimensionless)

values are conserved, as confirmed by independent experiments

with different sources [15–17,33]. More generally, this limitation

explains why we compared only relative quantities (i.e. shape of

probability distributions, spectral density functions, peak-to-mean

ratios, dimensionless concentrations Lair/ÆLairæ and intermittency

values). Other limitations of plume measurements are discussed

below.

Model of Early Transduction
The essentially multidimensional and stochastic nature of the

odor stimulus has a profound influence on the analysis of

olfactory transduction system in its natural context, as

undertaken here. Indeed to investigate the problems at hand,

the kinetic responses of the system to a very large number of

stimuli, varying in intensity, duration and temporal sequence

must be known in order to simulate the diversity of stimuli

encountered in a natural plume. This task is difficult, if not

impossible, to manage in a purely experimental approach.

However, this difficulty can be overcome with an exact dynamic

model of the system because its response to the diverse

conditions mentioned can be computed, provided it includes

all initial steps from molecules in the air to the early neural

response. This is the case of the perireception and reception

stages of the moth pheromonal ORN and the reason why it was

chosen in the present study. This choice brings about two

questions, one about the validity of the model, the other on its

position within a larger context.

The computational model employed has been thoroughly

researched and improved over the last three decades [25,35–37].

It describes perireceptor and receptor events in the ORN cell type

sensitive to the main pheromone component of the saturniid moth

Antheraea polyphemus. At the time of writing it represents the most

completely researched computational models of its kind, agreeing

with extensive experimental data from various authors and a wide

range of experimental techniques. This model is the best

description presently available for early events in any ORN and

it summarizes in a nutshell a wealth of dispersed knowledge. This

model is based on ordinary differential equations 4–8, following

the law of mass action for chemical reactions, and is therefore

purely deterministic. This approximation is acceptable when the

concentrations of reactants are high enough above single-

molecular levels, so that the stochastic fluctuations can be

neglected. In this paper, the concentration of R* is always well

above that corresponding to one activated receptor molecule per

neuron (approximately 1026.2 mM) because we do not investigate

the effect of extremely small pheromone doses. Then, the response

of the system can be considered as deterministic, in accordance

with the efficient coding hypothesis [8].

The system studied here constitutes only a small part of the

whole pheromonal system, although its role is absolutely essential

and all other parts depend on it. First, in ORNs, post-receptor

mechanisms modify the receptor signal, primarily by a large

amplification factor and by sensory adaptation. Second, the ORN

population includes cell types with different properties, e.g. the

ORN type sensitive to the minor pheromone components can

Figure 5. Experimental and theoretical cumulative probability
distribution functions (CDF) P(C) of dimensionless odorant
concentration C/,C. (concentration divided by the total mean
concentration). (A) Experimental CDF (solid) as measured at 75 m
from a propylene (passive tracer) source and its best exponential fit
(dashed) plotted on a logarithmic scale (taken from [19]). The
intermittency is included in the plots in the non-zero value of P(C) for
zero concentrations (see Methods). The experimental data clearly follow
the exponential CDF, except close to C = 0, which is caused by technical
issues in the measurement process [19]. The relatively high value of
measured intermittency (close to 47%) is caused mainly by initial data
processing [19]. (B) CDF predicted by the pheromone reception model
together with its best exponential fit, the scales correspond to panel (A)
After correcting (see Methods) for the fact that the intermittency
predicted by the pheromone reception model (20%) is lower than that
measured in [19] (as explained in the Discussion), the predictions
correspond well to the measured data in (A), except at very high values
of Lair where they are less frequent than expected. Since this deviation is
apparent only for events occurring with probability P,0.01, it can be
considered as non-significant.
doi:10.1371/journal.pcbi.1000053.g005
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follow periodic pulses up to 10 Hz [29], a performance not yet

accounted for in present models [27]. Third, in the brain

antennal lobe, convergence of a large number of ORNs on a few

projection neurons (PNs) provides another amplification and

supports the ability of some PNs to follow periodic signals at

10 Hz or greater [38]. Evolutionary adaptation of an integrated

ORN response is difficult to study at the present time because no

complete model of the ORN from receptors to the generation of

the receptor potential and the ensuing spike train, is yet available,

at least with the required degree of precision. The same argument

holds a fortiori for higher order processes. Notwithstanding, the

study of the early sensory events is not as restrictive as it may

seem because any incoming odor signal must be first transduced

in the population of membrane receptors. No information can be

extracted by the post-receptor transduction system which has not

been encoded by the receptors in the first place. For this reason it

is essential to investigate the nature of the adaptation of the initial

events (pheromone interaction with receptors) to the pheromone

signal.

Determination of the Optimal Stimulus
Different response states of the pheromone reception system

have different efficacies from the coding point of view: the ‘‘high’’

states, with large concentrations of activated receptors, take much

more time to deactivate than the ‘‘low’’ states, so that for some

time after its exposition to a large concentration of pheromone the

system is ‘‘dazzled’’. It means that in the optimal stimulus the low

pheromone concentrations must be more frequent than the high

ones. This is a difference with respect to the classical problem

where the efficacy of all response states at transferring information

is considered the same, as in the vision of contrasts for example.

The problem to solve is to find the right balance between two

conflicting demands: to use all response states (including the high

ones) and to react rapidly (the short transient responses must be as

frequent as possible), i.e. to maximimize the information

transferred per time unit.

The solution to this optimization problem is provided by

information theory as detailed in the Methods section. The

optimal balance derives from Equation 19 which relates the

average half-fall time and the maximum response entropy

distribution. The key factor to consider in the optimization is

the average half-fall time, which characterizes globally the

‘‘swiftness’’ of the system – smaller average half-fall time means

faster stimulation rate. In other words, the average half-fall time

characterizes the bias towards ‘‘low’’ response states. Simulta-

neously, the condition of maximum response entropy guarantees

that the temporal dynamics of the system is as varied as possible

and that during the course of stimulation every possible response

state is used (with appropriate frequency). By taking into account

only the average half-fall time, and not the precise sequence of its

individual values, we therefore do not neglect or limit the temporal

dynamics of receptor molecules activation. It is important to note,

that the average half-fall time is not a free parameter of the

problem; it is not set a priori: its optimal value follows from the

optimization procedure (Equation 20). The resulting optimal

response CDF is highly biased towards low response states, as

expected (see Figure 3C).

Table 2. Comparison of statistical characteristics of optimal and actual plumes.

Characteristicsa Predicted Valuesb Experimental Values

Concentration CDF (Figure 5) Exponential Exponential [18,19,32]

Spectra (Figure 5) Approx. flat to 0.2 Hz, Approx. flat to 0.1 Hz or 0.5 Hz

Close to 22/3 slope after 22/3 slope to 1 Hz [19,33])

Intermittency 20% 10–40% [17,39]

10–20% [15]

Total mean Lair 1.061024 mM –

Total std. dev. of Lair 3.061024 mM –

Peak value of Lair 3.861023 mM –

Peak/mean ratio 37 .20 [17,39]

30–150 [15]

Peak/std.dev. ratio 13 .3 [18]

aThe mean concentration, standard deviation and their ratios are calculated from the complete stimulus course, including parts of zero concentration (see Methods).
bBased on a simulated sample 4000 s long.
doi:10.1371/journal.pcbi.1000053.t002
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Figure 6. Spectral density functions of the predicted fluctua-
tions in time of pheromone concentration. Several spectral
density functions were calculated from the predicted optimal
pheromone stimulations (such as shown in Figure 4, bottom panels),
for different initial random seeds. Calculated spectral shapes are usually
almost flat from 0.02 Hz to 0.2 Hz, although exceptions are sometimes
observed at lower frequencies, which are also found in experimental
data [19]. Above 0.2 Hz there is a decreasing slope close to 22/3. Flat
spectrum up to 0.2 Hz and true 22/3 slope beyond are shown for
comparison (thick line). Spectra from experimental measurements (not
shown) on propylene plume obtained close to the source are reported
to exhibit a similar flat region followed by 22/3 slope [19].
doi:10.1371/journal.pcbi.1000053.g006

Efficient Olfactory Coding

PLoS Computational Biology | www.ploscompbiol.org 7 April 2008 | Volume 4 | Issue 4 | e1000053



Nature of the System Adaptation
The main achievement of the present investigation was to

predict the characteristics of the stimulus optimally processed by

the receptor system based on its biochemical characteristics and an

information theoretic approach. The predicted optimal plume was

shown to be close to the actual plumes for a series of

characteristics, namely intermittency, peak/mean ratio and

peak/standard deviation ratio of pheromone pulses, probability

distribution of dimensionless pheromone concentration and

spectral density function of pheromone concentration (Table 2,

Figures 4–6). The correspondence between the predictions and

measurements is very good for the last two characteristics

(probability distributions) and fair for the first three (numerical

values).

These differences in precision of the predictions may be

interpreted by taking into account technical factors. Increasing

the noise rejection threshold leads to a decrease of the measured

intermittency [15,19], while increasing the detector size or

averaging the signal over longer time windows has the opposite

effect [39]. So, for example, the small size of olfactory sensilla with

respect to detectors may explain in part why in Figure 4B, the

predicted intermittency seems lower than that in the correspond-

ing experimental record sample, and also why the peak-to-mean

ratio and peak-to-standard deviation ratio are relatively higher.

The immobility of the measurement devices, in contrast with the

active movements of the moths, is another significant factor. For

example, long pauses (of the order of minutes) of zero signal are

missing in the prediction but visible in the longest available field

record (350 s, Figure 4C). They are caused simply by the plume

being blown away from the immobile field detector. First, this loss

of signal is clearly an extraneous effect, which cannot be included

in our optimal signal predictions and therefore cannot be seen in

our results. Second, the moth is not subjected to this extraneous

effect, or at least not to the same extent, because, in case of signal

loss, it actively seeks the pheromone plume, whereas the fixed

detector must passively wait for its return. This difference of

mobility may substantially affect the intermittency values, but does

not affect the shape of probability distributions (see Methods),

hence the better quality of the fits in the latter case. In conclusion,

the results obtained suggest that the perireceptor and receptor

system investigated here is evolutionary adapted to the pheromone

plumes.

Even if one considers that the pheromone olfactory system must

be a priori adapted to the average characteristics of the pheromone

plumes, it does not logically follow that the system studied is itself

necessarily well adapted. Indeed, it is conceivable that the global

adaptation results mainly, not from perireception and reception

processes but from other downhill intra- and intercellular

processes involved in higher signal processing. The respective

importance of the former and latter processes in global adaptation

cannot be decided a priori. Therefore, the relatively close

correspondence between predicted and observed plume charac-

teristics presented here is not trivial. It suggests that the adaptation

at the level of receptors is already substantial, and consequently

that the global adaptation is not predominantly the result of post-

receptor mechanisms involving amplification, sensory adaptation,

convergence of different ORN types in the antennal lobes etc. The

role of these mechanisms in the global adaptation of the animal

remains to be established, as well as the relative importance of the

various components of the olfactory system (receptor population,

ORN as a whole, population of pheromonal ORNs in the

antenna, projection neurons in the antennal lobes, etc.). The

response characteristics of these other subsystems, e.g. their

various temporal resolutions, will have also to be interpreted,

maybe in relation with changing plume characteristics with

distance to the source and other factors yet to be identified.

Methods

Optimal Response Probability Distribution Function
As mentioned in the Results section, information transfer in the

pheromone reception system is limited by the finite response

range, (0, R�max), and by the deactivation rate of the activated

receptors for each concentration value R*. This deactivation rate is

described by the half-fall time t(R*). The optimal performance of

the system is thus reached by a trade-off between two conflicting

demands: to employ full response range (maximum information)

vs. to employ only the ‘‘fastest’’ responses (minimum average half-

fall time). In other words we need to maximize the information

transferred per average half-fall time. In the following we provide

the mathematical framework that enabled us to find the

probability distribution function over the response states R* that

realizes this trade-off.

Information transferred. The information transferred by

the pheromone reception system in a selected time window (t,t+Dt)

is described by the relation between all possible stimulus values,

Lair, and the corresponding response values, R*. This relation is

explicitly quantified by the mutual information, I(Lair; R*) (see [13]

for details)

I Lair; R�ð Þ~H R�ð Þ{H R� Lairjð Þ, ð11Þ

where H(R*) is the entropy of the response probability distribution

function and the conditional entropy H(R*|Lair) measures the

uncertainty in the output given the input, or equivalently, the

amount of noise in the information transduction [13,14]. The

model of pheromone reception employed here is deterministic and

therefore H(R*|Lair) = 0. Thus maximizing the mutual information

corresponds to maximizing the response entropy H(R*). (Note that

in the usual setting of signal independent and additive noise the

term H(R*|Lair) is constant and then maximization of I(Lair;R
*)

again corresponds to maximization of H(R*).)

The available response range, (0, R�max), is naturally discrete,

since it is comprised of individual receptor molecules. The

expression of H(R*) is ([13], p.14)

H R�ð Þ~{
XN

i~1

p R�ð Þ ln2 p R�ð Þ, ð12Þ

where p(R*) is the probability of having R* (expressed as a number

of molecules). (In the following we use the base of logarithm 2 only

to express all information-related quantities in the usual units of

‘‘bit’’).

The value of R* corresponding to one activated receptor

molecule per neuron is approximately DR* = 1026.2 mM [26],

which gives a total of N~R�max

�
DR�~380374 different response

states. Since N is so large, the impractical Equation 12 can be

replaced by a continuous approximation based on differential

entropy, h(R*), defined as ([13], p.243)

h R�ð Þ~{

ðR�max

0

f R�ð Þ ln2 f R�ð Þ dR�, ð13Þ

where f(R*) is the response probability density function. An

approximative relation between H(R*) and h(R*) is given in ([13]
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p.248)

H R�ð Þ&h R�ð Þ{ ln2 DR�: ð14Þ

In the present case the approximation is excellent because the

discretization step DR* is very small compared to the whole

response range (R�max~0:24 mM). From relation 14 the mutual

information 11 can be expressed in terms of differential entropy

I Lair; R�ð Þ&h R�ð Þ{ ln2 DR�: ð15Þ

Maximizing the information transferred is thus achieved by

maximizing the differential entropy h(R*). The advantage of

employing differential entropy is that it lends itself to an elegant

approach for entropy maximization in terms of integrals.

Information optimization. We adopt the standard

procedure for maximizing the differential entropy of a

continuous probability distribution constrained by a known

function t(R*). ‘‘Constraining’’ means that the average value Ætæ
of t(R*) is under our control (see [13], p.409)

StT~

ðR�max

0

f R�ð Þ t R�ð Þ dR�: ð16Þ

The task is to find a probability density function, fR(R*), which (i)

maximizes the value of h(R*) (Equation 13) and (ii) is such that the

average Ætæ (Equation 19) taken over fR(R*) is equal to the value we

set. The well known solution to this problem (see [13], p.410 or

[40] for its derivation) is

fR R�ð Þ~ 1

Z lð Þ exp {lt R�ð Þ½ �, ð17Þ

where

Z lð Þ~
ðR�max

0

exp {lt R�ð Þ½ � dR�: ð18Þ

It depends on new parameter, l, called Lagrange multiplier. In the

standard setting of maximum-entropy problems ([13] p.409 or

[8,40]) the mean value of the constraint function, Ætæ, is known a

priori. The value of l is then determined by substituting

f(R*) = fR(R*) in Equation 16, so that the following equation

between Ætæ and l holds

StT~

ðR�max

0

1

Z lð Þ exp {lt R�ð Þ½ � t R�ð Þ dR�: ð19Þ

In the case of pheromone reception, however, the value of Ætæ and

consequently of l is unknown. The value of l must be determined

by finding a compromise between maximum information

transferred (Equation 15) and minimum average half-fall time

(Equation 19). This compromise is made explicit by a simple

requirement

lopt~ max
l

I R�; Lairð Þ
StT

� �
: ð20Þ

In other words we maximize the information transfer per half-fall

time.

Application to pheromone reception. In order to simplify

practical calculations we substitute f(R*) = fR(R*) into the definition

of differential entropy 13 so that Equation 15 reduces to

I Lair; R�ð Þ&l StTzZ lð Þ{ ln2 DR�: ð21Þ

Now we have all the necessary information to calculate (i) the

mutual information I(Lair;R
*) from Equation 21 (shown in

Figure 7A), (ii) the mean half-fall time from Equation 19

(Figure 7B) and (iii) their ratio from Equation 20 (Figure 7C) in

dependence on the Lagrange multiplier l. Figure 7A shows that

the mutual information is maximized (18.5 bits) for l= 0 which

corresponds to the uniform probability distribution function over

the whole response range. Generally, since t(R*) is a monotonously

increasing function of R*, the optimal probability density function

fR(R*) (Equation 17) is either monotonously increasing (l,0),

monotonously decreasing (l.0), or constant (l= 0). The

multiplier l thus decides whether fR(R*) puts more weight on the

‘‘slow’’ response states (l,0) or on the ‘‘fast’’ response states

(l.0). These observations are confirmed in Figure 7B where the

mean half-time monotonically decreases with increasing l.

Figure 7C shows the information transferred per average half-

time, i.e., it shows the compromise between the ‘‘slowness’’ or

‘‘reactivity’’ of the system and the transferred information. Clearly,

there cannot be a maximum for l,0 where the system is both

‘‘slow’’ and below its information capacity (note the sharp decrease

of mutual information in Figure 7A for l,0). The optimal balance

between reactivity and information transfer is reached for l<6 at

8 bits/s. By substituting l= 6 into formula 17 we obtain the

desired optimal response probability density function, fR(R*), which

maximizes the information transfer per average half-time. The

corresponding CDF FR(R*), shown in Figure 3C, is given by

FR R�ð Þ~
ðR�

0

fR zð Þ dz: ð22Þ

The maximum of information transferred per average half-time

(Figure 7C) is not sharply defined, namely, the transfer of 7–

8 bits/s persists with values of l greater than the optimal value. At

the same time, both mutual information (Figure 7A) and average

half-time (Figure 7B) decrease slowly in the corresponding region,

indicating that the shape of the optimal response probability

distribution changes slowly with respect to l. Indeed, as we

verified numerically, varying l within reasonable limits (so that

information transferred stays close to 8 bits/s) has no impact on

the results presented in this work.

Optimal Stimulus Course
The optimal stimulus course in time was calculated as follows.

First, at time t0 = 0 a random value p0 is drawn randomly from a

uniform probability distribution function over the range [0,1]. The

concentration R�0 corresponding to probability p0 is obtained by

solving the equation

p0~FR R�0
� �

, ð23Þ

where FR(R*) is the optimal CDF given by formula 22 (Figure 3C).

The predicted optimal concentration Lair,0 for a pheromone pulse

of duration Dt = 0.4 s which corresponds to R�0 is obtained by
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solving the equation

R�0~R� Lair,0ð Þ, ð24Þ

where R*(Lair) is the stimulus-response function (Figure 3B). The

value Lair,0 is plotted at t0 (Figure 4). Second, the concentration

Lair,1 and time of appearance t1 of the next pulse are determined.

Time t1 follows from the falling phase of activated receptors:

optimality requires that no pheromone pulse appears before R*

returns to its resting level. In practice it is considered that the

resting level is reached when R* falls below 0.01 mM (less than 5%

of the coding range). The concentration Lair,1 of the pulse at t1 is

determined in the same way as for the pulse at t0 by drawing a new

random number p1 from the uniform probability distribution

function over [0,1]. The same process can be repeated as many

times as needed to create an optimal pheromone pulse train of

arbitrary length.

Optimal Stimulus Probability Distribution Function
It is common in the literature on the statistical analysis of

plumes [15,18,19] to define two types of mean concentrations.

The total mean concentration, ÆLairæ, describes the ‘‘true’’ mean

concentration obtained from the whole record of concentration

fluctuations in time, i.e., including the parts where no signal was

available. On the other hand, the conditional mean concentration,

ÆLairæcond, describes the mean concentration inside the plume, i.e.,

with zero concentrations excluded. The intermittency, c, relates

the two means as [19]

SLairT~cSLairTcond: ð25Þ

(Analogously, the total variances and total standard deviations are

calculated by taking into account also the parts where no signal is

available [19].)

By combining Equations 23 and 24 we may symbolically

express the optimal CDF of the stimulus, P(Lair), as

P Lairð Þ~FR R� Lairð Þ½ �: ð26Þ

Though P(Lair) cannot be expressed in a closed form, it can be well

approximated by the exponential CDF

Fexp Lairð Þ~1{ exp {
Lair

j

� �
, ð27Þ

where j= (5.2460.01)61024 mM is the estimated value of

ÆLairæcond by least-squares fitting of Fexp(Lair) to P(Lair).

In order to compare concentration probability distribution

functions from different measurements meaningfully, authors [19]

plot the CDF for a dimensionless concentration Lair/ÆLairæ. (In the

Figure 5A C/ÆCæ is used, since the data plotted were obtained

using a propylene source, not pheromone), see Figure 5A. The

scale of such plots is affected by intermittency due to the presence

of the total mean in the ratio. Furthermore, information about

intermittency is included explicitly in the plots by letting the

probability P(Lair = 0) of zero concentration be

P Lair~0ð Þ~1{c: ð28Þ

Consequently the CDF P(Lair) must be renormalized [19].

Intermittency affects only the dimensionless scale, Lair/ÆLairæ, and

the value of P(Lair = 0) but not the overall shape of CDF [19].

Therefore we can use formulas 25 and 28 to compare our

predictions with experimentally measured data by correcting for

different intermittency values.

Spectral Density Function of the Stimulus Course
The optimal stimulus course is represented by pulses of different

pheromone concentrations, Lair, occurring in time intervals 0.4 s

long. In order to calculate the spectral density function of such

stimulation course we sample the time axis with step Dt = 0.4 s.

Thus we obtain a series of pheromone concentrations at these time

points, {Lair,j}, j = 1…n, where n should be even. The discrete

Fourier transform, wk, of {Lair,j} is defined for k = 1,…,n values as

[41]

Qk~
Xn

j~1

Lair,j exp {2pi j{1ð Þ k{1ð Þ=nð Þ, ð29Þ

where i is the complex unit. The zero-frequency term is thus at

Figure 7. Determination of the optimal Lagrange multiplier l giving the optimal response probability distribution. (A) Mutual
information for the pheromone reception model in dependence on l (Equation 21). (B) Mean half-fall time in dependence on l (Equation 19). (C)
Information transferred per average half-time representing the balance between the reactivity of the system and information transferred (Equation
20). Maximum occurs for l<6.
doi:10.1371/journal.pcbi.1000053.g007
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position k = 1. The spectral density, S ( f ), of the complete time

course of the stimulus can be calculated for a total of n/2+1 values

of frequency f (given in Hz) [42]

S
m

n Dt

� 	
~

2

n2
Qmz1P

m

n Dt

� 	


 


2, ð30Þ

where m = 0, 1, 2,…, n/221, n/2 and f = m/(nDt) are the frequency

values. The function P(f) is the Fourier transform of a pulse of unit

height, 0.4 s long and starting at t = 0 [41],

P fð Þ~ 1

aj j
sin pf =að Þ

pf =a
exp {2pif dð Þ, ð31Þ

where a = 2.5 and d= 20.5. The function P( f ) appears in formula

30 because the whole stimulus course (such as shown in Figure 4,

bottom panels) can be reconstructed by convolving the discrete

series {Lair,j} with such a pulse of unit height in the time domain

[41].
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