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Abstract

We propose a novel measure of statistical dispersion of a positive continuous random variable: the
entropy-based dispersion (ED).  We discuss the properties of ED and contrast them with the widely
employed standard deviation (SD) measure.  We show that the properties of SD and ED are different:
while SD is a second moment characteristics measuring the dispersion relative to the mean value, ED
measures an effective spread of the probability distribution and is more closely related to the notion of
randomness of spiking activity.  We apply both SD and ED to analyze the temporal precision of neuronal
spiking activity of the perfect integrate-and-fire model, which is a plausible neural model under the
assumption of high input synaptic activity.  We show that SD and ED may give strikingly different results
for some widely used models of presynaptic activity.
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Introduction

Generally, neurons communicate by employing
chemical and electrical synapses, in a process known
as synaptic transmission.  The crucial event that
triggers synaptic transmission is the action potential
or spike, a pulse of electrical discharge that travels
along the axonal excitable membrane.  It is widely
accepted, that information in neuronal systems is
transferred by employing these spikes.  The shapes
and durations of individual spikes generated by a
given neuron are very similar, therefore it is generally
assumed that the form of the action potential is not
important in information transmission.  The lengths
of interspike intervals (ISIs) between two successive
spikes in a spike train often vary, apparently randomly,

both within and across trials (21, 42, 44).
There are two main hypotheses that attempt to

describe the ways by which the spikes carry infor-
mation: the frequency, or rate coding hypothesis and
the temporal spike coding hypothesis (21, 26, 36, 45).
In the rate coding scheme it is assumed, that the infor-
mation sent along the axon is encoded in the number
of spikes in a given time window (the number is the
firing rate) (2, 21, 29).  Temporal codes, on the other
hand, employ those features of the spiking activity,
that cannot be described by the firing rate, but can be
described by spike firing relative to some other spike
time.  For example, a neural code based on a time to
first spike after the stimulus onset, or characteristics
based on the second and higher statistical moments of
the ISI probability distribution, or precisely timed
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groups of spikes, temporal patterns, are all candidates
for temporal codes (8, 21, 26, 36, 41).  The rate coding
scheme is therefore typically considered under stable
time conditions.  On the other hand, temporal codes
are assumed to play a role whenever precise spike
timing is important (32, 36, 41).  Such situation
occurs, for example, as one descends into the central
nervous system from the peripheral auditory system
in bats, where certain neurons fire with precise latency
in response to the sound (14).  Precise timing and
coincidence detection are important for a variety of
other neuronal systems (22, 33) and this was a subject
for many theoretical studies, see (20, 32, 39) and
references therein.

Traditionally, the spike-timing precision is de-
scribed by employing the standard deviation (SD) of
interspike interval or of a first peristimulus spike time
(32, 39).  The goal of this paper is to apply a different
measure of statistical dispersion: the entropy-based
dispersion measure (ED).  Although SD is used ubiq-
uitously and is almost synonymous to the measure of
statistical dispersion, we show, that SD is not well
suited to quantify some aspects of dispersion that are
often expected intuitively.  For example, SD does
describe how far from the center are the values, and
not rather how diverse the values are.  The motivation
behind ED is rooted in the measure of randomness
(26), which is based on the information-theoretic
quantities, such as entropy and Kullback-Leibler diver-
gence (13).  To illustrate and discuss the differences
between ED and SD, we investigate the spiking activity
of presynaptic neurons, described by several fre-
quently used models of interspike interval probability
density function: exponential, gamma, inverse
Gaussian or bimodal log-normal.  We show that SD
and ED behave similarly for simple models of
presynaptic activity, especially when the variation
coeffcient CV of input spike trains inter-spike intervals
is not greater than one, CV ≤ 1.  However, for bimodal
lognormal or over-dispersed input spike trains with
the coeffcient of variation larger than one, the results
obtained by SD and ED differ strikingly.  We also
show, how the ED and SD might pinpoint some
optimal regimes and parameter values of presynaptic
spike trains.

Mathematical Framework

Measures of Statistical Dispersion

In order to describe and analyze neuronal firing,
statistical methods and methods of probability theory
and stochastic point processes are widely applied (15,
23, 35, 46).  The probabilistic description of the
spiking originates from the fact, that the positions
of spikes cannot be predicted deterministically, only

the probability that a spike occurs can be given (21).
Let us assume, that the time to the first spike (or the
inter-spike interval generally) is described by a con-
tinuous, positive random variable T.  One of the most
common probabilistic descriptors of T is the proba-
bility density function f (t), defined so that f (t)dt is the
probability that spike occurs in an infinitesimally
small time interval [t; t+dt] (35).  Probability density
function is usually estimated from the data by means
of histograms.

Generally, statistical dispersion is the vari-
ability or spread of the random variable T.  The
measure of statistical dispersion usually has the same
physical units as T.  There are many different measures
of statistical dispersion, employed in different con-
texts, for example standard deviation, inter-quantile
range or mean difference (11, 16, 24).  By far, the
most common measure is the standard deviation, σ,
defined as

σ = [t – E(T)]2 f (t)dt
0

∞ 1/2

, [1]

where E(T) is the mean value of T,

E(T) = t f (t)dt
0

∞
. [2]

Equivalently, the square of σ is the variance of T,
σ2 = Var(T).  The relative measure of dispersion, with
respect to the mean value, based on σ, is the coeffcient
of variation, CV, defined as

CV = σ
E(T) . [3]

Besides the mean value, the CV is one of the
most frequently used characteristics of interspike
intervals.  The main advantage of the CV as a charac-
teristics of latency, or of interspike interval, as com-
pared to σ is, that CV is dimension-less and its value
does not depend on the choice of units of T (e.g.,
seconds or milliseconds) and thus probability distribu-
tions with different means can be compared meaning-
fully (43).  Furthermore, the observed CV of interspike
intervals is related to the variability coding hypothesis
(10, 18, 36, 38).

From equation [1] we see, that σ measures es-
sentially how off-centered is the distribution of T.
The value of σ grows, as the probability of values
close to E(T) decreases.  Furthermore, since the dis-
tance from the mean value, (t – E(T)), is squared in
equation [1], it follows that σ is sensitive to out-
lying values.  Most importantly, σ does not quantify
how random, or unpredictable, are the latencies or
interspike intervals described by random variable T.
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Indeed, high value of σ (high variability) does not
indicate that the probability distribution of T is close
to the uniform distribution, in other words that the
probabilities of different values that T can take are as
evenly distributed as possible (26).  Main motivation
of this paper is to propose such measure of statistical
dispersion, that would describe randomness of the
probability distribution of T.

In order to proceed on, we extend our previous
work done on measuring randomness of neuronal
activity (26, 27), based on the information-theoretic
concept of entropy (13).  Informally, the entropy
measures the choice of different values that T may
take.  The entropy h(T) of the random variable T with
probability density function f(t) is defined as

h(T) = – f (t) ln f (t)dt
0

∞
. [4]

However, h(T) does not have the same properties
and intuitive interpretation as the original Shannon’s
entropy of discrete random variables.  Namely, the
value of h(T) may be positive or negative and changes
with coordinate transforms.  This way it depends on
the choice of units of T, let it be seconds or milli-
seconds.  Since the probability density function f(t)
has a physical dimension, it is a derivative of proba-
bility with respect to the variable t, h(T) has physical
dimension of the logarithm of the variable t, let it be
the logarithm of second.  Therefore h(T) is not directly
usable as a measure of statistical dispersion.

In order to obtain a properly behaved quantity,
we propose a normalized entropy, η, as follows (26,
27).  First, a new, dimensionless random variable Θ
with E(Θ) = 1 is obtained from T, by

Θ = T
E(T) . [5]

Normalized entropy is then defined as the
entropy of Θ, h(Θ).  After a change of variables in
integral [4] we obtain (27)

η ≡ h(Θ) = h(T) – ln E(T). [6]

Said in another way, formula [6] represents a
unique decomposition of entropy h(T) into a sum of 2
terms: ln E(T) and a dimensionless number η(T).  It
follows from equation [6], that the exponential of h
(T) can be conveniently expressed as

ζ ≡ exp h(T) = E(T) exp η. [7]

The definition of ζ is central to our paper and in
the following we show that it can be interpreted as a
dispersion measure and discuss its properties.  The

interpretation of ζ relies on the consequences of the
asymptotic equipartition property theorem (AEP) (3,
13), which we briefly review in the Appendix.  The
main conclusion relevant for our purposes is that ζ is
related to a volume of the typical set, Sδ

(n), associated
with T.  This is the set of almost all possible values
that T can take (for the precise definition see the
Appendix).  For n independent realizations of T the
following relation holds

ζ ≈ vol[Sδ
(n)]n . [8]

The formula [8] means that ζ is the side length
of a n-dimensional cube with the same volume as the
asymptotic typical set.  In other words, since we con-
sider only sequences T1, ..., Tn of independent iden-
tically distributed random variables, asymptotically
almost any observed sequence {τ1, ..., τn} comes from
a limited subset of the whole support.  The length of
the support is ζ per observation (see Appendix for
details).  Thus, ζ can be considered as a type of
measure of statistical dispersion of a random variable
T.  Small values of ζ mean that most of the probability
is concentrated, while high values indicate spreaded
distribution.  However, the distribution spread mea-
sured by σ and ζ is different.  The ζ increases as the
probability of different values of T gets more and
more uniform, which increases the volume of Sδ

(n).  In
other words, ζ measures how evenly is the probability
distributed over the entire support of T.  From this
point of view, ζ is more appropriate if we wish to
know how diverse the values of T are.  Typically, the
greatest difference between σ and ζ should be ex-
pected in multimodal distributions, as we later show
for the bimodal lognormal model.  Furthermore, 3 is
directly related by equation [7] to the notion random-
ness, η, of spiking neuronal activity, see (26) for
details.

Next we will derive one more useful relation for
ζ.  Let fexp(t) be a probability density function of an
exponential distribution, fexp(t) = exp(–t/λ)/λ, with
the mean value equal to E(T), λ = E(T).  Then formula
[7] can be written as

ζ = E(T) exp[1 – DKL( f fexp)] , [9]

where DKL(f g) is the Kullback-Leibler divergence
(13),

DKL( f g) = f (t)ln
f (t)
g(t)dt

0

∞
. [10]

It is useful to scale the values of ζ with the base
of natural logarithm, e, and define ζe in the following
way
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ζ e =
ζ
e = E(T) exp[ – DKL( f fexp)] . [11]

In analogy to the definition of CV , equation [3],
as a relative dispersion measure based on σ, it is
straightforward to arrive to a relative dispersion
measure based on ζe, here denoted simply as ζe/E(T),

ζ e/E(T) = exp[ – DKL( f fexp)] . [12]

By recalling that the entropy of exponential
distribution is given by

h(T) = 1 + lnE(T), [13]

see reference (13), we also see, that ζe can be inter-
preted as a standard deviation, σ, of exponential
distribution with the same entropy as the distribution
in question, described by probability density function
f(t).  This argument further supports ζ, or ζe, as a valid
measure of statistical dispersion.  We also note, that
entropy, h(T), is defined uniquely up to a multiplicative
constant, or the logarithm base in equation [4], see (3)
for details.  However, from formula [27] follows, that
the exponential function must be taken within the
same base as the logarithm in the entropy definition.
Therefore ζ is unique, independent on the logarithm
base.  Finally, the units of σ and ζ are the same, thus
allowing for a direct comparison between these two
quantities.

Perfect Integrate-and-Fire Model

Integrate and fire neuronal model, perfect
integrator (9, 21, 46), is one of the simplest neural
models, yet it captures the integration property of
neuron, especially for time scales shorter than the
neuronal time constant, which can be measured
electro-physiologically.  In this paper we illustrate
the effect of quantifying the dispersion of spike timing
by employing different measures: σ and ζ.  We con-
sider a set of n presynaptic neurons.  At time t = 0
there is a stimulus onset, and the time to the first spike
of each of those n neurons is described by the same
probability density function, fin(t).  The target neuron
is described by the perfect integrator model.  It fires
after first k spikes (k ≤ n) from presynaptic neurons
are received.  Schematically, we write

1 – st input : fin(t)

n – th input : fin(t)
→ first (k) spikes → fout(t) .

[14]

The probability density function, fout(t), of time

to the first spike of the target neuron, perfect integrator,
assuming that each input neuron fires only once, is
given by the order statistics (17)

fout(t) = n!k
k!(n – k)![Fin(t)]k – 1[1 – Fin(t)]n – k fin(t) ,

[15]

where Fin(t) is the cumulative distribution function
of the individual input random variables,

Fin(t) = fin(z)dz
0

t
. [16]

Results

In this section we use several input timing
densities fin(t) in the perfect integrate-and-fire model
to produce output densities fout(t).  We compare the
statistical dispersion measures of these densities.  The
measures are: σ given by equation [1], CV given by
equation [3], ζe given by equation [11] and ζe/E(T)
given by equation [12].  The individual presynaptic
activities are given by the input probability density
functions fin(t).  As the input densities we employ
several widely used models of interspike interval
distributions.  The output densities are densities of
the time to the first spike, or latency, of the perfect
integrate-and-fire neural model.  They are described
by random variable Tout with probability density
function fout(t) defined by equation [15].  For selected
input function fin(t) we examine the dependence of
the dispersion measures on k (the number of presy-
naptic spikes required for the perfect integrator neuron
to spike) and n (the total number of presynaptic
neurons).  We distinguish two situations: a) fixed n
and variable k, by which we study the effect of perfect
integrator threshold (k) for a given intensity (n) of
synaptic activity; b) fixed k and variable n, by which
we study the effect of increasing synaptic input for a
given threshold.

Gamma Model

Gamma distribution is one of the most frequent
statistical descriptors of interspike intervals em-
ployed in experimental data analysis (31, 34, 37, 40).
The probability density function of gamma distri-
bution, parameterized by its mean value, µ, and
coefficient of variation, CV, instead by the usual pair
of µ and σ, is

fin(t) = 1
CV

2 µ
1/CV

2

Γ(1/CV
2 )t1/CV

2 – 1exp – t
CV

2 µ
,[17]
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see reference (28), where Γ(z) = tz – 1exp( – t)dt
0

∞
 is

the gamma function (1).  For CV = 1 the gamma distri-
bution becomes exponential distribution, thus repre-
senting the canonical case of spiking being described
by a homogeneous Poisson process.  Due to its sim-
plicity, the exponential model of presynaptic activity
is the only one, for which the output characteristics
can be expressed by means of tabulated functions.
The mean value of time to the first spike, E(Tout), of
the perfect integrator neuron then is

E(Tout) = µHn – µHn–k, [18]

where Hn is the n-th harmonic number (1).  Standard
deviation of Tout becomes

σ = µ ψ′(1 + n) + ψ′(1 – k + n) , [19]

where ψ′(z) is the first derivative of the digamma
function (1), and entropy based dispersion measure
of Tout is

ζ =
µΓ(k)(n – k)!

n! exp[(1 – k)ψ(k) + nψ(1 + n)

       + (k – n – 1)ψ(k + n – 1)] , [20]

where Γ(z) is the gamma function.  Fig. 1 shows the
comparison between di(r)erent dispersion measures
for the simple case of exponential presynaptic activity.
Although the absolute numerical values differ, qualita-
tively there is no difference between measures based
on standard deviation or entropy.  We calculated the
quantities for the presynaptic gamma model for the
case CV < 1, and detected again qualitatively similar
behavior between the two measures, thus we do not
show the corresponding figure here.  Generally, we
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Fig. 1. In this and all subsequent figures, five characteristics of the output spike timing density fout(t) are shown: mean time E(Tout),
standard deviation and entropy based dispersion as dimensional values (σ and ζe = ζ/e, panels A and C) and relative values
(CV and ζe/E(Tout), panels B and D), in dependency on varying parameter k, panels A and B, and parameter n, panels C and D.
Input model fin at this figure has the exponential distribution with E(T) = 1 s.
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do not expect σ and ζe and their relative counterparts
CV and ζe/E(T), to give qualitatively different results
for CV < 1, whenever gamma, lognormal, inverse
gaussian or the distribution resulting from the leaky
integrate and fire model are employed, see (25, 27)
for details.  Fig. 2 shows the situation for CV > 1 on the
input.  While qualitatively σ and ζe agree for the out-
put latencies, the respective CV and ζe/E(T) measures
do not.

Inverse Gaussian Model

The inverse Gaussian distribution (12) is often
used to describe neural activity and fitted to ex-
perimentally observed ISIs (4, 19, 31, 37).  This
distribution is the first threshold passage time of the
neuronal membrane potential modeled by the Wiener
process with positive drift.  Simply, in this model the
neuron depolarization has a linear trend to the thresh-

old.  This distribution describes the spiking activity
of a stochastic variant of the perfect integrator: the
non leaky integrate and fire stochastic neuronal model
(30).  The probability density of the inverse Gaussian
distribution can be expressed as

f (t) =
µ

2πCV
2 t3 exp – 1

2CV
2 µ

(t – µ)2

t . [21]

In Fig. 3 we show the behavior of this model,
which can give us an inference of how network of
several layers of these neuronal models can behave,
(32, 46).

Bimodal Lognormal Model

The lognormal distribution of interspike inter-
vals, with some exceptions (5), is rarely presented as
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Fig. 2. Input distribution fin is gamma distribution with E(T) = 1 s, σ = 4 s and ζ = 0.007 s.  With the rising number of synaptic inputs,
the dimensional versions of the two measures are alike, yet the relative measures differ.  In this and all other figures we can
see that input distributions transformed by equation [15] exhibit distinguished output behaviors.
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a result of a neuronal model.  However, it represents
quite a common descriptor in experimental data
analysis (31, 37).  A mixture of two lognormal distri-
butions has been used recently in identification of
the ISI of the supraoptic nucleus activity (6, 7).  The
lognormal probability density function, parameterized
by the mean value µ and coefficient of variation CV,
instead by the usual pair of µ and σ, is

f1n(t; µ, CV) = 1
t 2π ln(1 + CV

2 )
exp

                      ⋅ – 1
8

[ln(1 + CV
2 ) + 2 ln(t/µ)]2

ln(1 + CV
2 )

.

[22]

The bimodal lognormal probability density func-
tion can be expressed as a mixture of two lognormal
probability density functions (6) as

f ln
(mix) (t; µ1, µ2, CV1, CV2, p) = p fln(t; µ1, CV1)

+ (1 – p) fln(t; µ2, CV2), [23]

where 0 < p < 1.  The mean value 1 and standard
deviation σ of the mixture can be calculated to be

µ = p(µ1 – µ2) + µ2 [24]

and

σ = CV
2 µ2

2 – p2(µ1 – µ2)2 + p[(1 + CV1
2 )µ1

2 – 2µ1µ2 – (CV2
2 – 1)µ2

2] .

[25]

Thus, the same values of µ and σ of the bimodal
lognormal model can be achieved by employing
different parameter values of the original lognormal
distributions in the mixture [23].  The bimodality of
the input distribution of latencies allows us to examine
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Fig. 3. Input model fin is inverse Gaussian distribution with E(T) = 1 s, σ = 4 s and ζ = 0.39 s.  This particular distribution is not only
frequently observed in experimental neuronal firing, but is also a natural description of output firing of a stochastic neuronal
model.  Note the non-monotonic behavior of the ζe/E(Tout), see the text for details.
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striking differences between σ and ζ (and their rela-
tive counterparts), such as shown in Figs. 4 and 5.

Discussion

The aim of this study is to propose an alternative
measure of spike timing variability, we call it entropy
based dispersion and denote ζ.  This measure reflects
better some information theoretic properties of distri-
butions, therefore it is useful, whenever we discuss
possible computations and encodings performed by a
single neuron.  To demonstrate the properties of the
new dispersion measure, we employ one of the sim-
plest neuronal model, the (perfect) integrate and fire
model.

What is the mechanism of firing in the perfect
integrate and fire model?  The variable corresponding
to the membrane potential of the real neuron in the
perfect integrate and fire model reaches the threshold
without decay, as compared to the leaky integrate and

fire model.  Therefore with all parameters equal, per-
fect integrator will have higher firing rate and lower
standard deviation, compared to the leaky integrate
and fire.  Also both models are equal when the mem-
brane time constant τ value approaches infinity (9,
21).  These are the reasons why results obtained in
perfect integrator are representative for the class of
simplified one point models, since the higher values
of σ we get, more interesting values we get, possibly
close to bimodal distributions.

When the amount of synaptic inputs bombarding
the neuron is sufficiently high, E(Tout) << E(Tin), results
obtained in both respective types of neuronal model
are close.  To capture the behavior of the synaptic
transmission in other regimes, our systematic inves-
tigation of number of spikes needed to the threshold
as one of the parameters gives the timing precision of
the model when the number of synaptic input is low
and therefore the leaky integrator and perfect
integrator results may differ.
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Fig. 4. Input model fin is bimodal lognormal distribution, E(T) = 6.8 s, σ = 2.65 s and ζ = 2.08 s.  The bimodality of the distribution,
frequently observed in data, yields higher CV.  This shows bimodality of critical neuronal regimes, which might be regarded as
close to regimes optimal for neural coding.  Here in panel C this can be seen for the σ curve, but not for the ζe curve.
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Multimodal data are important, because multi-
modal ISI reflects either that different regimes of
neural firing are present (like regular firing and
bursting), or they reflect the fine timing structure in
the input, like the neural firing in the auditory nerve
or in the visual cortical area MT, (32).  Multimodal
spike trains can be found not only in sensory systems
like the previous two examples, but also in the su-
praoptic neurons interfacing the central and autono-
mous system in mammals, (6) and elsewhere.

We have following sets of parameters and
distributions, where our results are of particular im-
portance.  First, interesting results are obtained, when
ζe and σ attain local extremes, for example in Fig. 1
for k = 40 and analogously in Fig. 5 A for k = 30 and
more than one local extreme, like in Fig. 4 and 5.

While σ measures how far from the central
value E(T) is the ISI distribution, ζ measures how
evenly is the probability distributed over the entire
supporting interval.  From this point of view, ζ is
more appropriate if we wish to know how diverse in

a sense of transmitting meaningful information are
the values that T can take.  The ζ can also measure,
how random the T values are.  Both ζ and σ give
similar results for simple models of presynaptic
activity, especially if it holds CV < 1 for presynaptic
latencies.  For bimodal probability density functions
or over-dispersed presynaptic latencies with CV > 1
the results obtained by ζ and σ differ.
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Appendix: Asymptotic Equipartition Property

Analogously to the AEP for discrete random
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Fig. 5. Input model fin is bimodal lognormal distribution, parameterized with E(T) = 3.83 s, σ = 3.85 s and ζ = 0.61 s.  The comparison
with the previous figure clearly shows how different regimes of the same neural model with the same input distribution only with
different scaling arrives to several critical points shown by local extremes.
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variables (3) we consider a sequence T1, T2, ..., Tn of
independent identically distributed random variables
with joint probability density function f(t1, t2, ..., tn) =
Πn

i=1 f(t).  Then for a sequence of realizations {T1 =
τ1, ..., Tn = τn} we have by the weak law of large
numbers

– 1
n ln f (τ 1, ..., τ n) → h(T) , [26]

where the convergence with increasing n is in proba-
bility and h(T) is the entropy of the probability density
f(t).  Said more precisely, for a fixed ε > 0 and δ > 0
we can find n such, that for any sequence {τ1, ..., τn}
holds

Pr – 1
n ln f (τ 1, ..., τ n) – h(T) ≤ δ ≥ 1 – ε . [27]

Expression [27] leads to the definition of typical
set Sδ

(n), which contains sequences that satisfy

Sδ
(n) = {τ 1, ..., τ n} : – 1

n ln f (τ 1, ..., τ n) – h(T) ≤ δ .

[28]

Essentially, the “typicality” of Sδ
(n) means that a

randomly drawn sequence of values {τ1, ..., τn} proba-
bly belongs to Sδ

(n), and this probability can be made
arbitrarily close to one for n sufficiently large.

By rewriting the definition [28] we have for
any {τ1, ..., τn} ∈ Sδ

(n)

exp (–n(h(T) + δ)) ≤ f(τ1, ..., τn)
≤ exp (–n(h(T) – δ)). [29]

We employ formulas [27] and [29] to calculate
bounds on the volume of the typical set,

vol[Sδ
(n)] = dt1 ... dtn

Sδ
(n)

. [30]

From expression [27] we have Pr[Sδ
(n)] ≥ 1 – ε, in

other words

f (t1, ..., tn)dt1 ... dtn ≥ 1 – ε
Sδ

(n)
. [31]

By substituting the upper bound from inequality
[29], formula [31] becomes

exp( – n(h(T) – δ)) dt1 ... dtn
Sδ

(n)
≥ 1 – ε , [32]

since exp(–n(h(T) – δ)) is constant with respect to
the integration.  To employ the lower bound from
inequality [29] we start from the fact that Sδ

(n) cannot

exceed the support of f(t1, ..., tn) and therefore

f (t1, ..., tn)dt1 ... dtn
Sδ

(n)
≤ 1 , [33]

and by similar argument as before we come to

exp( – n(h(T) + δ)) dt1 ... dtn
Sδ

(n)
≤ 1 . [34]

Combining formulas [30], [32] and [34] gives
the following bounds on the volume of Sδ

(n),

(1 – ε) exp(n(h(T) – δ)) ≤ vol[Sδ
(n)]

≤ exp(n(h(T) + δ)). [35]

Finally, comparing formulas [7] and [35] yields
formula [8].
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