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Information capacity in the weak-signal approximation
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We derive an approximate expression for mutual information in a broad class of discrete-time
stationary channels with continuous input, under the constraint of vanishing input amplitude or
power. The approximation describes the input by its covariance matrix, while the channel properties
are described by the Fisher information matrix. This separation of input and channel properties
allows us to analyze the optimality conditions in a convenient way. We show that input correlations
in memoryless channels do not affect channel capacity since their effect decreases fast with vanishing
input amplitude or power. On the other hand, for channels with memory, properly matching the
input covariances to the dependence structure of the noise may lead to almost noiseless information
transfer, even for intermediate values of the noise correlations. Since many model systems described
in mathematical neuroscience and biophysics operate in the high noise regime and weak-signal
conditions, we believe, that the described results are of potential interest also to researchers in these
areas.

PACS numbers: 89.90.+n, 89.70.Kn

I. INTRODUCTION

Information theory is a mathematical framework that
provides tools for quantification of information content
and information transfer in systems defined by general
probabilistic rules [1]. The theory has been applied suc-
cessfully to a wide range of problems [2], including, e.g.,
classical and quantum computation and communication
[3–5], optical communication [6–8] or quantification of
different aspects of information processing in real neu-
rons and neuronal models [9–15].

The measure of information transfer in information
theory is represented by a nonlinear functional of the
probability measure over the joint input-output space
[1]. The concavity of this functional in the input proba-
bility measure has important implications for numerical
approaches to finding the information optimality condi-
tions [1, 16–18]. On the other hand, approximations or
even closed-form solutions are quite rare. The classical
exact solution for the linear channel with additive (pos-
sibly non-white) Gaussian noise [1, 19] and input power
constraint has been applied in many different situations.
However, in many cases of interest the channel is signif-
icantly nonlinear or non-Gaussian or there are different
input constraints [20] and one has to rely on numerical
solutions or approximations.

The approximations allow us to investigate, although
locally and under perhaps restrictive scenario, the effect
of individual components in the system on the optimal-
ity conditions. In particular, if the noise in information
transfer is substantially low and regular, there exists a
tight lower bound on the information optimality condi-
tions (denoted as low-noise approximation in this paper)
which has been investigated in [12, 21–23]. In this pa-
per we continue the effort started in [24] and we describe
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essentially the opposite situation: the high-noise approx-
imation. Such approximation is of interest when the sig-
nal is very weak compared to the noise in the information
transfer, for example, as in the classical stochastic reso-
nance effect observed in electrosensory neurons [24, 25].

II. MEASURES OF INFORMATION

Throughout this paper we assume the discrete-time
setting [5], we denote the consequent channel outputs
(responses) as a vector of random variables (r.v.) R =
({Ri}n

i=1)T, which may be discrete or continuous, i in-
dexes the time and (·)T denotes the transposition. The
response, Ri = ri, results from the corresponding in-
put Θi = θi, where the input is also described by a n-
dimensional r.v. Θ. The multidimensional description
of the process of information transfer between Θ and R

allows us to include the effect of memory, i.e., the depen-
dence on current and also on past inputs and responses.
We also assume that the input alphabet is continuous [5].
In the following we consider stationary channels fully de-
scribed by the conditional probability density function
(p.d.f.) f(r|θ), which generally factorizes as [26]

f(r|θ) =

n
∏

i=1

fi(ri|θi, θi−1, . . . , θ1, ri−1, . . . , r1). (1)

We do not consider channel feedback, the dependence of
current input on past responses [1].

Mutual information (MI) is the fundamental quan-
tity measuring information transfer in channels [1]. MI
I(Θ; R) gives the degree of statistical dependence be-
tween inputs and responses, defined as

I(Θ; R) = 〈DKL [f(r|θ) ‖ p(r)]〉
θ
, (2)

where

p(r) = 〈f(r|θ)〉
θ

(3)
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is the marginal joint p.d.f. of responses, and the av-
eraging is with respect to the input p.d.f., π(θ). The
Kullback-Leibler (KL) divergence is defined as

DKL [f(r|θ) ‖ p(r)] =

〈

ln
f(r|θ)

p(r)

〉

r|θ

, (4)

where the averaging is with respect to f(r|θ). From
Eq. (2) follows, that MI is a property of the joint distribu-
tion of stimuli and responses. Of particular interest are
the optimality conditions for information transfer, that
is the maximum value of I(Θ; R) and the corresponding
optimal π(θ). In order to have a well-posed problem, one
is interested in the optimality conditions for Θ satisfy-
ing certain additional constraints, e.g., average power or
range of inputs [1, 20]. The maximum value of MI per
channel use, taken over all possible stimuli distributions
satisfying constraints G, is denoted as the information
capacity, C, defined as [20]

C = lim
n→∞

1

n

[

sup
π(θ)∈G

I(Θ; R)

]

. (5)

In this paper we interpret C as the upper bound on the
rate at which the information can be transmitted reli-
ably [1], without considering the complexity of achieving
such maximum rate in practical terms. Specifically, do
not discuss the properties of any particular coding and
decoding schemes [5].

Whenever we are interested in reliability of input-
output transmission, we naturally interfere with the do-
main of statistical estimation theory [27]. Fisher infor-
mation (FI) matrix, defined as

J(θ|R) =
〈

[∇ ln f(r|θ)][∇ ln f(r|θ)]T
〉

r|θ
, (6)

where

∇ =

(

∂

∂θ1
, · · · , ∂

∂θn

)T

, (7)

imposes limits on the precision of θ estimation from the
responses by means of the Cramer-Rao bound, which says
that for the variance of any unbiased estimator of θi holds
Var(θ̂i) ≥ [J−1(θ|R)]ii [27]. Generally, FI requires that
f(r|θ) is continuously differentiable in θ [27]. In this pa-
per, we additionally assume that f(r|θ) is twice continu-
ously differentiable in θ, so that the following conditions
hold

∫

R

∇f(r|θ) dr = 0,

∫

R

∇∇Tf(r|θ) dr = 0. (8)

There is a variety of relationships between FI, MI and
KL divergence established in the literature [1, 28, 29],
further motivated by the fields of information geometry
[30] or stochastic complexity [31]. The already mentioned
low-noise approximation to MI is constructed by employ-
ing the Cramer-Rao bound [12, 21–23]. Although we
demonstrate that the high-noise approximation also in-
volves FI, we never employ the Cramer-Rao bound and
the appearance of FI is due to certain asymptotic prop-
erties of the KL distance [28].

III. INFORMATION TRANSFER BY WEAK
SIGNALS

A. Small input amplitude limit

The channel properties are described by the condi-
tional probability density f(r|θ), which satisfies the reg-
ularity conditions (8). The input, described by r.v. Θ,
is restricted in amplitude,

Θ ∈ [θ0 − ∆θ,θ0 + ∆θ], (9)

for chosen θ0 and ∆θ, or more precisely in components:
for all i holds Θi ∈ [θ0 − ∆θ, θ0 + ∆θ] and ∆θ > 0.
The situation for a memoryless channel is illustrated in
Fig. 1. The goal is to derive an approximation to mutual
information in the limit ‖∆θ‖ → 0. We demonstrate in
detail in Appendix A, that the approximation (to second
order in the input amplitude) can be written as

I(Θ; R) ≈ 1

2
tr [J(θ0|R)CΘ] , (10)

where J(θ0|R) is the FI matrix from Eq. (6) evaluated
at θ = θ0, CΘ is the covariance matrix of Θ and tr (·) is
the matrix trace. Eq. (10), derived also in [24], holds for
a broad class of channels with memory, both biologically-
inspired and artificial and represents the main result.
An important feature of Eq. (10) is, that the channel
properties (described by the FI matrix) and the input
properties (described by its covariance matrix) are sepa-
rated. Therefore, the maximum value of MI can be found
by matching the corresponding elements of J(θ0|R) and
CΘ. The elements of the covariance matrix of Θ can be
written as [32]

[CΘ]ik = σ2̺ik, (11)

where σ2 ≡
√

Var(Θi)Var(Θk) is constant for all i, k due
to stationarity, and ̺ik = corr(Θi,Θk) is the correla-
tion coefficient. The maximum variance of the amplitude
constrained input from Eq. (9) is maxσ2 = (∆θ)2 and
−1 < ̺ik < 1, thus I(Θ; R) in Eq. (10) is maximized if

̺ik → sgn[J(θ0|R)]ik, (12)

where sgn(·) is the sign function. Note, that the diag-
onal elements of the FI matrix are positive while the
off-diagonal elements can be negative. It may happen,
that the matrix CΘ formed by Eqns. (12) and (11) is
not positive-semidefinite[33], i.e., it cannot be a proper
covariance matrix [34], even though J(θ0|R) generally is
positive-semidefinite [27]. However, in all problems we
have calculated so far, proper input covariance matrix
could be formed, given J(θ0|R), and then it holds from
Eqns. (5) and (10)

C ≈ Chigh = lim
n→∞

(∆θ)2

2n

∑

i,k

|[J(θ0|R)]ik| , (13)
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FIG. 1. Information transmission with amplitude-constrained
inputs. The input signal, described by r.v. Θ, is restricted to
the interval [θ0 − ∆θ, θ0 + ∆θ]. Due to presence of noise, the
responses to each particular θ vary randomly, described by
the conditional probability density f(r|θ). While the mem-
oryless information channel is fully described by f(r|θ), the
amount of information transferred depends on both f(r|θ)
and the distribution of Θ. We examine the maximum infor-
mation transfer by inputs restricted to small amplitudes when
there is a significant overlap of f(r|θ0 −∆θ) and f(r|θ0 +∆θ).
Heuristically, the problem can be also described as the infor-
mation transmission in a very noisy environment, or under
very low signal-to-noise ratio conditions.

where Chigh denotes the high noise approximation to the
true capacity C.

For stationary memoryless channels f(r|θ) factorizes
due to Eq. (1) as [1, p.193]

f(r|θ) =

n
∏

i=1

f(ri|θi), (14)

thus from Eq. (6) follows that the FI matrix is diagonal,
J(θ0|R) ≡ [J(θ0|R)]ii =

〈

[∂θ ln f(r|θ)]2
〉

r|θ
, and from

Eq. (13) we have

Chigh =
(∆θ)2

2
J(θ0|R), (15)

a result obtained by different means in [35]. The optimal
input p.d.f., π∗(θ), is the maximum variance distribution
over the given input range,

π∗(θ) =
1

2
δ(θ − θ0 − ∆θ) +

1

2
δ(θ − θ0 + ∆θ), (16)

where δ(·) is the Dirac’s delta function. In other words,
the capacity is achieved by a binary input, and thus C ≤
1 bit.

From Eq. (10) follows, that non-diagonal elements of
CΘ do not affect the information capacity of memoryless
channels in the vanishing input amplitude case. This
result is counterintuitive, because correlations generally

decrease the input entropy [1]. Therefore in the following
we provide a proof which is independent of Eq. (10). Let
us consider two consequent uses of a stationary memory-
less channel, i.e., Θ = {Θ1,Θ2}T, R = {R1, R2}T. We
assume, that the inputs Θ1 and Θ2 are generally sta-
tistically dependent, (Θ1,Θ2) ∼ π(θ1, θ2), and the joint
marginal distribution of responses is denoted as p(r), see
also Eq. (3). By employing the factorization (14) and ba-
sic relations between entropy, h(R) = − 〈ln p(r)〉

r
, and

MI [1, p.21] we have

I(Θ; R) = h(R) − 〈h(R|θ)〉
θ

=

= h(R1) + h(R2) − I(R1;R2) −
− 〈h(R1|θ1) + h(R2|θ2)〉

θ
=

= I(Θ1;R1) + I(Θ2;R2) − I(R1;R2) =

= 2I(Θ1;R1) − I(R1;R2), (17)

since I(Θ1;R1) = I(Θ2;R2) due to stationarity. In other
words, the difference in information transfer when using
two dependent or independent inputs in the memoryless
channel is equal to I(R1;R2). Obviously, for Θ1,Θ2 inde-
pendent holds I(R1;R2) = 0. The strength of the depen-
dence between R1 and R2 for correlated inputs depends
on the input range and the conditional response distri-
butions, see Fig. 1. We expect I(R1;R2) to be maximal
for the extreme input dependence, e.g., Θ2 = Θ1, where
Θ1 is equiprobably equal either to θ0 − ∆θ or θ0 + ∆θ.
It follows, that R1, R2 are conditionally (given Θ1) iden-
tically and conditionally independently distributed. If
f(r|θ0 − ∆θ) and f(r|θ0 + ∆θ) are well separated, then
I(R1;R2) > 0 because R2 provides redundant infor-
mation to R1. As ∆θ → 0, then f(r|θ0 − ∆θ) and
f(r|θ0 +∆θ) become (almost) identical due to continuity
in θ and thus I(R1;R2) → 0. To make the argument pre-
cise, we show that I(R1;R2) = 0 to the second order in
the input amplitude, so that the effect of input correla-
tions in memoryless channels is of higher order than the
approximate Eq. (10). The joint response distribution is

p(r1, r2) =
1

2
f(r1|θ0 + ∆θ)f(r2|θ0 + ∆θ) +

+
1

2
f(r1|θ0 − ∆θ)f(r2|θ0 − ∆θ), (18)

from which the marginals follow p(r1) = f(r1|θ0 +
∆θ)/2 + f(r1|θ0 − ∆θ)/2, and similarly for p(r2). We
employ another formula for MI [1, p.251]

I(R1;R2) = DKL [p(r1, r2) ‖ p(r1)p(r2)] . (19)

By substituting from Eq. (18) into Eq. (19), and by em-
ploying the Taylor expansion in ∆θ around ∆θ = 0, we
have (the terms up to ∆θ are zero)

I(R1;R2) ≈ (∆θ)2

∫∫

R1×R2

[

∂f(r1|θ)
∂θ

∂f(r2|θ)
∂θ

]∣

∣

∣

∣

θ=θ0

dr1 dr2,

which is equal to zero, due to Eq. (8). The first
nonzero term is of 4-th order, and can be written as
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(∆θ)4J(θ0|R1)J(θ0|R2)/2, provided that f(r|θ) is three
times continuously differentiable in θ.

On the other hand, for channels with memory the input
correlations do matter, irrespectively of the smallness of
the amplitude. Consider, for example, two channel uses
in the additive noise case, Ri = Θi +Zi, 〈Zi〉 = 0, where
i = 1, 2. It is possible to approach the noiseless channel in
the extreme case of matching input and noise correlations
in accord with Eq. (10), e.g., if corr(Z1, Z2) → −1 and
corr(Θ1,Θ2) → 1, then R1 = Θ1 +Z1 and R2 = Θ1 −Z1

and so by adding R1 +R2 we can recover the value of Θ1

perfectly.

B. Small input power limit

The signal power [36], PΘ, of an input signal described
by r.v. Θ is defined as

PΘ =
1

n

〈

Θ
T
Θ

〉

. (20)

For the covariance matrix CΘ of r.v. Θ holds CΘ =
〈

(Θ − 〈Θ〉)(Θ − 〈Θ〉)T
〉

, and therefore

PΘ =
1

n

[

tr CΘ + ‖ 〈Θ〉 ‖2
]

. (21)

The information channel is constrained in the input
power P if only inputs that satisfy P ≥ PΘ are con-
sidered. It is common in information theory of power-
constrained channels, to assume 〈Θ〉 = 0, then PΘ =
tr CΘ/n [1, p.277], which we assume here also. The as-
sumption 〈Θ〉 = 0 results in simpler notation, although
it does not affect the generality of results. Due to sta-
tionarity, the marginal variances of r.v. Θ are constant,
Var(Θi) = const. for all i, thus we can write

Θ = εΘ̃, (22)

where Var(Θ̃i) = 1 and ε > 0 is the scaling factor. The
power of the input is then PΘ = ε2, and the vanishing
input power is achieved by ε → 0.

The approximate expression for MI in the vanishing
input power limit is obtained analogously to the proof
presented in Appendix A, by expressing I(Θ; R) in terms
of the auxiliary r.v. Θ̃, and then expanding for ε → 0
around ε = 0. Let Θ ∼ π(θ) and Θ̃ ∼ g(θ̃), then from
Eq. (22) follows π(θ) = g(θ/ε)/ε = g(θ̃)/ε, and also
dθ = ε dθ̃. The MI can be written by (analogously to
Eq. (A2))

I(Θ; R) =
〈

DKL

[

f(r|εθ̃) ‖
〈

f(r|εθ̃)
〉

θ̃

]〉

θ̃
. (23)

The rest follows the argument of Appendix A, although
simplified due to 〈Θ〉 = 0. It is obvious from the general
proof, that the assumption on zero 〈Θ〉 is not essential,
only that the vanishing input power is then with respect
to 〈Θ〉, so that tr CΘ/n is the vanishing power of in-
put fluctuations. Nevertheless, the approximation is the

same in both cases and reads

I(Θ; R) ≈ ε2

2
tr [J(θ0|R)C

Θ̃
] =

1

2
tr [J(θ0|R)CΘ], (24)

where 〈Θ〉 = θ0.
Eqns. (10) and (24) are identical, although the assump-

tions on Θ are different. Consider for example the memo-
ryless channel with power constraint P ≥ ε2 on the input
and 〈Θ〉 = 0, so that Eq. (24) can be written as

I(Θ;R) ≈ ε2

2
J(0|R). (25)

The capacity is achieved by any distribution of inputs
with power PΘ = ε2 = P , for example by the discrete
distribution from Eq. (16) with ∆θ =

√
P , or by the

Gaussian distribution N (0, P ). Specifically, it is well
known that the capacity of a power-constrained linear
additive white Gaussian noise (AWGN) channel is [1]

C =
1

2
ln

(

1 +
P

N

)

, (26)

where P is the power constraint on the input and N is
the noise power, and that the capacity is achieved by
a normal distribution N (0, P ). The signal-to-noise ra-
tio (SNR) is then defined as SNR = P/N . By expand-
ing Eq. (26) to first order in P for P ≪ N we have
C ≈ P/N/2, which corresponds exactly to Eq. (25), since
for the Gaussian additive noise holds J(0|R) = 1/N . A
detailed review of AWGN channel capacity and its differ-
ent approximations for different SNR regimes (including
the high-noise approximation above) can be found in [37].
The conclusion that in the vanishing input-power limit
the capacity of AWGN channel can be achieved by both
discrete and N (0, P ) distributions is not so surprising
in the light of some recent research on the AWGN chan-
nels [38]. It has been shown, that although the optimal
input distribution is generally N (0, P ), the capacity can
be near-achieved by a discrete distribution, and specially,
if P ≪ N the other possible capacity-bearing distribu-
tion is indeed binary discrete. The methods employed in
[38] are, however, different from our approach. We fur-
ther discuss the compatibility of Eq. (24) with the exact
results obtained for non-white AGN channels in the low-
input power regime in the Results section of this paper.

C. Simple lower bound on memoryless channel
capacity

We have demonstrated in the previous sections, that if
the input to the memoryless channel is weak (in ampli-
tude or power), the optimal distribution is discrete and
binary. Therefore the channel capacity cannot be more
than 1 bit. Note, however, that the capacity can be larger
than 1 bit for channels with memory under certain cir-
cumstances, as we demonstrate in the Results section.
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It follows from the proof in Appendix A, that the
Fisher information arises in Eq. (10) from Taylor-
expanding the involved KL distances in the expression
for MI. More precise approximation to channel capacity,
Cbin, can be thus obtained without Taylor expansions,
just by substituting the discrete input distribution from
Eq. (16) into Eq. (2),

Cbin =
1

2
DKL [f(r|θ0 − ∆θ) ‖ p(r)] +

+
1

2
DKL [f(r|θ0 + ∆θ) ‖ p(r)] , (27)

where p(r) = f(r|θ0 − ∆θ)/2 + f(r|θ0 + ∆θ)/2. The
parameter ∆θ is half of the maximum input amplitude
for amplitude-constrained channels, and ∆θ =

√
P for

power-constrained channels.
Eq. (27) is the lower bound on the true capacity,

C ≥ Cbin, which holds whether the amplitude (or power)
is small or not. The extension of Eq. (27) to chan-
nels with memory is not straightforward, for example
the calculation of Cbin would require numerical evalua-
tion of possibly high-dimensional integrals which may not
be numerically stable [39]. Therefore for channels with
memory we propose to employ Eq. (10) as the simplest
method.

IV. RESULTS FOR SELECTED SYSTEMS

A. Memoryless channels

1. Amplitude constrained linear AWGN channel

The capacity and capacity-bearing input distributions
of the linear AWGN channel,

R = Θ + Z, (28)

where r.v. Z is zero-mean Gaussian and the input is
constrained in amplitude, were studied in detail in [18].
Contrary to the well known Eq. (26) for the input power
constrained channel, no closed-form expression for capac-
ity exists in the amplitude constrained version, moreover
the optimal input distribution is known to be discrete
with finite set of mass points.

We assume θ0 = 0, the maximal input amplitude
is 2∆θ, thus the input is bound to lie in the interval
[−∆θ,∆θ]. Furthermore we assume that the power of
the noise is N = 1, so the noise is described by the stan-
dard normal r.v., Z ∼ N (0, 1). Eq. (15) then becomes

Chigh =
1

2
(∆θ)2. (29)

The binary approximation, Cbin given by Eq. (27), has to
be evaluated numerically. Additionally, we also investi-
gate the low noise approximation to MI, Clow, which is
also based on FI [12, 21, 22],

Clow = ln

∫

Θ

√

J(θ|R) dθ√
2πe

. (30)

Eq. (30) is a lower bound on the true channel capacity,
C ≥ Clow, tight with the vanishing noise in the informa-
tion transmission. In the case of amplitude-constrained
AWGN channel we have

Clow = ln
2∆θ√
2πe

. (31)

Fig. 2a. shows the comparison of the exact channel
capacity (data taken from [16]) with Chigh, Cbin and Clow,
expressed as functions of the signal-to-noise ratio (in dB),
which is defined as [16]

SNR = 10 log10

[

(∆θ)2
]

. (32)

The capacities are evaluated in bits which means convert-
ing the natural logarithms in Eqns. (15), (27) and (30)
to base 2, i.e., to divide the values by ln 2. While Clow

and Chigh provide good approximations only for rather
high and small SNR values, the Cbin approximation gives
good results even for intermediate SNR values. A simi-
lar figure with additional approximations for the classical
AWGN channel capacity can be found in [37].

2. Temporal neuronal coding

Recently, the information capacity of a memoryless
neuronal model has been analyzed in detail [17]. It
is assumed, that the neuronal response R is the inter-
val between two consequent action potentials. In agree-
ment with some experimental observations [40–43], the
response for each input follows the gamma distribution,

f(r|θ) =
rκ−1

θκ

exp(−r/θ)
Γ(κ)

, (33)

where the parameter θ is assumed to be the input (stim-
ulus intensity). Based on further experimental observa-
tions [44], the input is constrained in amplitude, 5/κ ≤
θ ≤ 50/κ. The exact capacity was calculated numerically
by Ikeda and Manton [17] for 0.75 ≤ κ ≤ 4.5.

While Cbin has to be evaluated numerically, for the high
and low noise approximations we have

Chigh =
81

242
κ, Clow = ln

√
κ ln 10√

2πe
. (34)

The results are shown in Fig. 2b. For the investigated val-
ues of κ, both Chigh and Cbin approximations give better
results than Clow, which suggests that this particular case
of temporal coding falls within the “high noise” category.
Neuronal responses often vary substantially across iden-
tical stimulus trials, thus the highly noisy information
transmission is not unusual as reported from experimen-
tal measurements [45]. A simple model of a stochastic
resonance in an electrosensory neuron, subject to sub-
threshold (i.e., very weak) stimulation [25, 46] has been
analyzed by employing Chigh recently [24].
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(a) Amplitude constrained linear AWGN channel
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FIG. 2. Capacities and their approximations in memory-
less channels. The high-noise capacity approximation (Chigh,
Eq. (15)) approximates the true capacity of the amplitude-
constrained AWGN channel (a) well only for very low signal-
to-noise ratios (SNR), just like the low-noise approximation
(Clow, Eq. (30)) does for high SNRs. The binary-channel ap-
proximation (Cbin, Eq. (27)) holds well even for intermediate-
low SNRs. The exact solution is taken from [16]. The in-
formation capacity of a simple model of neuronal coding (b)
apparently falls into the high-noise category, since both Chigh

and Cbin approximate the true capacity (taken from [17]) bet-
ter than Clow.

B. Linear Gaussian channel with memory and
input power constraint

First, we demonstrate that Eq. (24) is compatible with
exact results available on input power constrained linear
AGN channels with memory [1, 19] in the limit of weak
input power. The channel is defined as

R = Θ + Z, (35)

where the zero-mean input is constrained in power P [1,
p.277],

P ≥ 1

n
tr CΘ, (36)

and the noise is given by the multivariate normal distri-
bution with covariance matrix CZ, Z ∼ N (0,CZ). The
channel conditional p.d.f. is therefore

f(r|θ) =
1

√

(2π)n det CZ

exp
[

(r − θ)TC−1
Z

(r − θ)
]

,

(37)
and substituting Eq. (37) into Eq. (6) gives [27]

J(θ|R) = C−1
Z
, (38)

which is independent of θ.
From the spectral decomposition theorem [34] follows

that

CZ = QΛQT, (39)

where the matrix Λ is diagonal with positive elements
and Q is orthonormal. The capacity per channel use is
then given by [19]

C =
1

2n

n
∑

i=1

ln

(

1 +
mi

[Λ]ii

)

, (40)

where the constants mi ≥ 0 are determined by the water-
filling procedure [1, p.274], so that the power constraint
given by Eq. (36) holds as

∑n

i=1 mi = nP . Further-
more, the optimal input distribution is also multivari-
ate normal, Θ ∼ N (0,CΘ), with covariance matrix
CΘ = QMQT [19, p.279], where the diagonal matrix
M is defined as [M]ii = mi.

In order to obtain the vanishing input power limit of
Eq. (40), we observe that as P → 0 also mi → 0, so we
can expand Eq. (40) as

C ≈ 1

2n

n
∑

i=1

mi

[Λ]ii
=

1

2n
tr

(

Λ
−1M

)

. (41)

By combining Eqns. (38), (39), (41) and basic properties
of matrix inverse and trace [34] we have

C ≈ 1

2n
tr [(QTCZQ)−1M] =

1

2n
tr [QTC−1

Z
QM] =

=
1

2n
tr [C−1

Z
QMQT] =

1

2n
tr [J(θ|R)CΘ], (42)

which corresponds to the capacity per channel use as n →
∞, due to Eq. (24), for power achieving input, tr CΘ/n =
P .

Next, we illustrate Eq. (42) on two simple models of
Gaussian noise with memory.

1. AR(1) noise

The channel is given by Eqns. (35) and (36), with
Zi’s following the AR(1) process: Zi = ̺Zi−1 + Xi,
where −1 < ̺ < 1 is the correlation coefficient, ̺ =
corr(Zi, Zi−1), and Xi are independently distributed
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standard normal r.v.’s, Xi
i.i.d.∼ N (0, 1) [32]. The noise

covariance matrix has elements

[CZ]ik = ̺|i−k|, (43)

and its inverse, equal to the FI matrix by Eq. (38), is
tridiagonal,

J(θ|R) =
1

1 − ̺2

















1 −̺ 0 · · · 0
−̺ 1 + ̺2 −̺ · · · 0

0 −̺ . . .
. . .

...
...

...
. . . 1 + ̺2 −̺

0 0 0 −̺ 1

















.

(44)
We denote the correlation coefficient between consequent
inputs as c = corr(Θi,Θi+1). The MI per channel use for
maximum power achieving input, P = tr CΘ/n, can be
found exactly by employing Eq. (24),

lim
n→∞

1

n
I(Θ; R) =

P

2

̺2 + 1 − 2c̺

1 − ̺2
. (45)

For ̺ = 0 (memoryless channel) the value of c does not
matter as discussed earlier. The capacity per channel use
is

Chigh =
P

2

̺2 + 1 + 2|̺|
1 − ̺2

, (46)

since sup−1<c<1(−c̺) = |̺|. The capacity in bits per
vanishing input power, Chigh/P , is shown in Fig. 3 in
dependence on the noise correlation ̺. Note that from
Eq. (46) follows Chigh/P → ∞ as |̺| → 1, i.e., as the noise
correlation increases, its corrupting power decreases and
in the limit we can approach the noiseless channel.

2. MA(1) noise

The channel is given by Eqns. (35) and (36), r.v.’s
Zi follow the MA(1) process, Zi = Xi − γXi−1, where

−1 < γ < 1 is the parameter of the process and Xi
i.i.d.∼

N (0, 1). The parameter of the MA(1) process and the
correlation coefficient ̺ = corr(Zi, Zi−1) are related as
̺ = −γ/(1 + γ2), and therefore −0.5 < ̺ < 0.5 [32].
The covariance matrix of the MA(1) process is tridiago-
nal, and its inverse has all elements non-zero, although
decreasing in absolute value with the distance from the
main diagonal, see Fig. 4a, b.

Recently, a closed form expression for C−1
Z

of the
MA(1) process has been published [47]. The expression
is rather complicated and we cannot evaluate the anal-
ogous limit to Eq. (45) in a closed form. Nevertheless,
we approximate the capacity per channel use by consid-
ering n high enough, and the closed form expression for
the elements of the FI matrix allows us to avoid numer-
ical issues when inverting the covariance matrix. The
capacity per vanishing input power, Chigh/P , is shown in

0 0.2 0.4 0.6 0.8 1

100

101

Noise correlation ρ

C
h
ig

h
/

P
[b

it
/p

o
w

er
]

Capacity per vanishing input power

MA(1) Gaussian noise

AR(1) Gaussian noise

FIG. 3. The capacities per vanishing input powers for the
AR(1) and MA(1) Gaussian additive noise models in depen-
dence on the the noise correlation coefficient ̺ (the graphs
are symmetric in ̺). Note that the capacity tends to infinity
as |̺| → 0.5 (the MA(1) model) and as |̺| → 1 (the AR(1)
model). In these limits, the corrupting power of the noise in
the information transfer is decreased to the point, that the
channel approaches the noiseless channel and the input value
can be recovered perfectly.

Fig. 3. Note, that for n ≤ 2000 we were unable to ob-
tain stable values of Chigh for |̺| > 4.2. This is caused
by the fact, that the dominant terms of the FI matrix,
and consequently Chigh/P , diverge to +∞ as |̺| → 0.5
(in a similar way as Eq. (46) does for |̺| → 1). In other
words, the dependence structure of the MA(1) process is
sufficiently “rigid” even for intermediate correlation val-
ues, that by properly matching the input correlations we
can approach the noiseless information transfer. The ex-
amples of optimally matched input signals are shown in
Fig. 4c, d, e.

V. CONCLUSIONS

We derive approximate expression for mutual informa-
tion in a broad class of discrete-time stationary chan-
nels (including those with memory) with continuous, but
small, input. The input is restricted either in amplitude
or in power and we study the optimality conditions on
information transfer as the power or amplitude approach
zero. We find that the input and channel properties are
separated in the approximate formula, which allows us
to study the optimality conditions in a convenient way.
Specifically, we find that the increase of mutual informa-
tion from zero power (or amplitude) for a given channel
depends only on the input covariances.

For memoryless channels, the capacity cannot be more
than 1 bit per channel use and the optimal input is unique
discrete binary distribution in the small input amplitude
case, but generally non-unique in the small input power
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(a) FI matrix, ρ =+0.45

−1
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(b) FI matrix, ρ =−0.45

0

1

2

(e) Optimal signalling, noise ρ ≥ 0

(d) Optimal signalling, noise ρ ≤ 0

(c) Optimal signalling, noise ρ = 0

discrete time steps

FIG. 4. Small input amplitude optimality conditions for lin-
ear channels with AR(1) or MA(1) additive Gaussian noise.
The structure of the Fisher information matrix of the MA(1)
model (panels (a) and (b) for n = 50) shows elements decay-
ing in absolute value with distance from the main diagonal,
sign changes occur for positively correlated MA(1) process
and all elements are positive for ̺ ≤ 0. The structure of
the FI matrix determines the covariance matrix of the opti-
mal signal. Panel (c) shows the example optimal input to
the memoryless channel (noise correlation ̺ = 0): random

switching between input values +
√

P and −
√

P (discrete bi-
nary input), where P is the input power constraint. The
same capacity would be achieved by input values described
by the normal distribution N (0, P ), as discussed in the text.
Depending on the sign of the noise correlation ̺, the opti-
mal input is characterized by extremal value of correlation
between consequent inputs (panels (d) and (e)). Note, that
the capacity of the memoryless channel is achieved by (d)
and (e) also, independently on the input correlations.

case. We demonstrate, that the effect of input correla-
tions in memoryless channels is of higher order than the
order of the capacity approximation, and thus the addi-
tional correlations do not decrease the capacity although
they decrease the input entropy. We also provide a simple
lower bound on capacity of memoryless channels subject
to weak-stimulus constraints that gives better results in
practical situations.

In channels with memory, the capacity can be greater
than 1 bit and the input correlations play the most im-
portant role. We show, that the approximate formula in-
cludes the small input power limit of the exact solution
for linear additive Gaussian noise channels with memory.
We show, that by properly matching the input covari-
ances to the dependence structure of the noise, we can
approach in certain cases the noiseless channel even for
intermediate values of the noise correlations.
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Appendix A: Capacity in the vanishing input
amplitude

We introduce an auxiliary r.v. δΘ by employing
Eq. (9) as

δΘ = Θ − θ0, (A1)

so that for all i holds δθi ∈ [−∆θ,∆θ]. The p.d.f. of r.v.
δΘ is denoted as π(δθ). Mutual information I(Θ; R)
from Eq. (2) can be written in terms of r.v. δΘ, whether
‖∆θ‖ is small or not as

I(Θ; R) = 〈DKL [f(r|θ0 + δθ) ‖ 〈f(r|θ0 + δθ)〉δθ]〉
δθ
.

(A2)
In order to approximate I(Θ; R) around θ0 in terms of
δθ for small ‖∆θ‖, we need to expand the KL distance
in Eq. (A2). We introduce

ϕ(r,θ0 + δθ) = f(r|θ0 + δθ) ln f(r|θ0 + δθ), (A3)

ψ(r,θ0 + δθ) = f(r|θ0 + δθ) ln 〈f(r|θ0 + δθ)〉δθ ,(A4)

and rewrite the KL distance as

DKL [f(r|θ0 + δθ) ‖ 〈f(r|θ0 + δθ)〉δθ] =

=

∫

R

[ϕ(r,θ0 + δθ) − ψ(r,θ0 + δθ)] dr, (A5)

thus reducing the problem to expanding ϕ(r,θ) and
ψ(r,θ). While the Taylor expansion of ϕ(r,θ) is straight-
forward, the expansion of the logarithm of the expected
value of f(r|θ) in ψ(r,θ) is examined in the following
Lemma.

Lemma 1. Let f(r|θ) be twice continuously differen-
tiable with respect to θ. Then for a chosen θ0, r.v.
δΘ ∼ π(δθ) and ∆θ such, that for all i holds ∆θ > 0
and −∆θ ≤ δθi ≤ ∆θ, there exists P > 0 such, that the
following approximation for small enough ‖∆θ‖ holds

ln 〈f(r|θ0 + δθ)〉δθ ≈ ln f(r|θ0) + 〈δΘ〉T ∇f(r|θ0)

f(r|θ0)
,

(A6)
where ∇f(r|θ0) = ∇f(r|θ)|

θ=θ0
, the gradient is taken

with respect to θ and 〈δΘ〉 = 〈δΘ〉δθ is the expectation
of r.v. δΘ. The maximum error of expansion (A6) is
bounded by P‖∆θ‖2.

Proof. From the continuity of second derivatives of f(r|θ)
around θ0 follows

∣

∣

∣

∣

∂2f(r|θ)

∂θi ∂θj

∣

∣

∣

∣

≤ M, (A7)
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for all i, j. The Taylor expansion of f(r|θ) around θ0 in
terms of δθ reads

f(r|θ0 + δθ) ≈ f(r|θ0) + δθT∇f(r|θ0), (A8)

and furthermore

∣

∣f(r|θ0 + δθ) − f(r|θ0) − δθT∇f(r|θ0)
∣

∣ ≤
≤ nM‖δθ‖2 ≤ C‖∆θ‖2. (A9)

By integrating the expansion (A8), i.e., by taking the
expectation with respect to r.v. δΘ, and by employing
inequality (A9) it can be established that

∣

∣

∣

∣

∫

R

π(δθ)f(r|θ0 + δθ) d(δθ) − f(r|θ0) − 〈δΘ〉T ∇f(r|θ0)

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∫

R

π(δθ)
[

f(r|θ0 + δθ) − f(r|θ0) − δθT∇f(r|θ0)
]

d(δθ)

∣

∣

∣

∣

≤
∫

R

π(δθ)C‖∆θ‖2 d(δθ) = C‖∆θ‖2, (A10)

and therefore the following expansion holds

∫

R

π(δθ)f(r|θ0 + δθ) d(δθ) ≈ f(r|θ0) + 〈δΘ〉T ∇f(r|θ0), (A11)

with the maximum error of order ‖∆θ‖2. From the Lagrange mean value theorem follows, that for A,B > 0 holds

| lnA− lnB| ≤ 1

min(A,B)
|A−B|. (A12)

We set A =
∫

R
π(δθ)f(r|θ0 + δθ) d(δθ), B = f(r|θ0)+ 〈δΘ〉T ∇f(r|θ0), and combine the inequalities (A10) and (A12)

to obtain

| lnA− lnB| =

∣

∣

∣

∣

ln

∫

R

π(δθ)f(r|θ0 + δθ) d(δθ) − ln
[

f(r|θ0) + 〈δΘ〉T ∇f(r|θ0)
]

∣

∣

∣

∣

≤

≤ 1

min(A,B)
|A−B| ≤ 1

min(A,B)
C‖∆θ‖2, (A13)

where min(A,B) is finite due to regularity of f(r|θ). From the Taylor expansion of ln(a+ x) around a in terms of x
and the expression for the Lagrange remainder [48] we have

∣

∣

∣ln(a+ x) − ln(a) − x

a

∣

∣

∣ ≤ x2

a2
. (A14)

Setting a = f(r|θ0) and x = 〈δΘ〉T ∇f(r|θ0) thus gives

∣

∣

∣

∣

∣

ln
[

f(r|θ0) + 〈δΘ〉T ∇f(r|θ0)
]

− ln f(r|θ0) − 〈δΘ〉T ∇f(r|θ0)

f(r|θ0)

∣

∣

∣

∣

∣

≤ ‖∇f(r|θ0)‖2

f2(r|θ0)
‖∆θ‖2. (A15)

Finally, we apply the triangle inequality for absolute value, |α− β| ≤ |α− γ| + |γ − β|, setting

α = lnA = ln

∫

R

π(δθ)f(r|θ0 + δθ) d(δθ), β = ln f(r|θ0) +
〈δΘ〉T ∇f(r|θ0)

f(r|θ0)
, (A16)

γ = lnB = ln
[

f(r|θ0) + 〈δΘ〉T ∇f(r|θ0)
]

, (A17)
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and by combining inequalities (A13) and (A15) we obtain

∣

∣

∣

∣

∣

ln

∫

R

π(δθ)f(r|θ0 + δθ) d(δθ) − ln f(r|θ0) − 〈δΘ〉T ∇f(r|θ0)

f(r|θ0)

∣

∣

∣

∣

∣

≤

≤
∣

∣

∣

∣

ln

∫

R

π(δθ)f(r|θ0 + δθ) d(δθ) − ln
[

f(r|θ0) + 〈δΘ〉T ∇f(r|θ0)
]

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

ln
[

f(r|θ0) + 〈δΘ〉T ∇f(r|θ0)
]

− ln f(r|θ0) − 〈δΘ〉T ∇f(r|θ0)

f(r|θ0)

∣

∣

∣

∣

∣

≤

≤ 1

min(A,B)
C‖∆θ‖2 +

‖∇f(r|θ0)‖2

f2(r|θ0)
‖∆θ‖2 = P‖∆θ‖2, (A18)

and therefore

ln 〈f(r|θ0 + δθ)〉δθ ≈ ln f(r|θ0) + 〈δΘ〉T ∇f(r|θ0)

f(r|θ0)
,

(A19)
with error of order ‖∆θ‖2.

In the following we set ϕ ≡ ϕ(r,θ0 +δθ), ψ ≡ ψ(r,θ0 +
δθ), f ≡ f(r|θ0) and ∇f ≡ ∇f(r|θ)|

θ=θ0
for shorthand,

and by repeatedly applying Lemma 1 and keeping in
mind the rules for derivatives (fg)′′ = f ′′g+ 2f ′g′ + fg′′,
and (ln f)′′ = f ′′/f − (f ′/f)2, we obtain the expansions

ϕ ≈ f ln f + δθT ln f∇f + δθT∇f +

+
1

2
δθT ln f∇∇Tf δθ + δθT

∇f∇Tf

f
δθ +

+
1

2
δθTf

[∇∇Tf

f
− ∇f∇Tf

f2

]

δθ, (A20)

ψ ≈ f ln f + δθT ln f∇f + 〈δΘ〉T ∇f +

+
1

2
δθT ln f∇∇Tf δθ + δθT

∇f∇Tf

f
〈δΘ〉 +

+
1

2
〈δΘ〉T

f

[∇∇Tf

f
− ∇f∇Tf

f2

]

〈δΘ〉 . (A21)

We substitute these expansions into Eq. (A5), and by

applying the regularity conditions (8) we have

∫

R

[ϕ− ψ] dr ≈ 1

2
δθTJ(θ0|R)δθ−

− δθTJ(θ0|R) 〈δΘ〉 +
1

2
〈δΘ〉T

J(θ0|R) 〈δΘ〉 , (A22)

where we employed the definition (6) of Fisher informa-
tion matrix for J(θ0|R) = J(θ|R)|θ=θ0

. Due to symme-
try J(θ0|R) = [J(θ0|R)]T holds

δθTJ(θ0|R) 〈δΘ〉 =
1

2

[

δθTJ(θ0|R) 〈δΘ〉+〈δΘ〉T
J(θ0|R)δθ

]

,

(A23)
and so from Eq. (A2) we have

I(Θ; R) ≈ 1

2

〈

[δθ − 〈δΘ〉]
T

J(θ0|R) [δθ − 〈δΘ〉]
〉

δθ
.

(A24)
The covariance matrix CδΘ of r.v. δΘ is defined as

CδΘ =
〈

[δθ − 〈δΘ〉] [δθ − 〈δΘ〉]
T

〉

δθ
, (A25)

and obviously CδΘ = CT

δΘ. Since θ0 is fixed, and
Θ = δΘ + θ0, the covariance matrices of r.v. Θ and
r.v. δΘ are equal, CΘ = CδΘ. Furthermore, the law
of matrix multiplication gives [AB]ik =

∑

j [A]ij [B]jk,

thus summing along i = k gives the trace, i.e., tr (AB) =
∑

i[AB]ii =
∑

i,j [A]ij [B]ji. Therefore, Eq. (A24) can be

written in a compact form as Eq. (10).
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