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Information transfer with small-amplitude signals
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We study the optimality conditions of information transfer in systems with memory in the low
signal-to-noise ratio regime of vanishing input amplitude. We find that the optimal mutual infor-
mation is represented by a maximum-variance of the signal time course, with correlation structure
determined by the Fisher information matrix. We provide illustration of the method on a simple
biologically-inspired model of electro-sensory neuron. Our general results apply also to the study of
information transfer in single neurons subject to weak stimulation, with implications to the problem
of coding efficiency in biological systems.

PACS numbers: 87.19.lo, 87.19.ls, 89.70.Kn, 89.90.+n

Theoretical approach to the problem of information
processing in biological (neuronal) systems has received
significant attention over the past few decades [1, 2],
with information theory [3–5] providing the fundamen-
tal framework [6–12]. Of particular interest are the opti-
mality conditions under which the information between
stimuli and responses is maximized [13–17], leading to
the idea of efficient coding hypothesis [18]. Due to non-
linear nature of information-theoretic measures, explic-
itly formulated optimality conditions are relatively rare
[4, 19, 20], nevertheless numerical methods exploiting
properties of mutual information are available [4, 16, 21].
Recently, the asymptotic relation between mutual infor-
mation and Fisher information [22, 23] has been em-
ployed for the analysis of optimality conditions in the
setting of large neuronal populations and large output
signal-to-noise (SNR) ratios [6, 24].

In this paper we examine the effect of vanishing signal
amplitude on the information transfer. We are motivated
by the situation observed in sensory neurons, which are
in many cases known to be responding to weak stim-
uli intensities (relative to the external or internal noise
sources) [2, 25, 26]. Information transfer in channels sub-
ject to input cost constraints, with implications to low
SNR conditions, has also been of interest in information-
theoretic literature [20]. In this paper we employ a dif-
ferent setting and examine information transfer in chan-
nels with memory under vanishing stimulus amplitude
constraint. We explicitly consider the effect of channel
memory, since many realistic systems exhibit this prop-
erty on various time scales, and furthermore the presence
of memory is known to enhance information transfer in
many cases [4, 27–29]. Finally, we apply the theory to
calculate the effect of memory on information transmis-
sion in a simple neuronal model [30, 31]. This system ex-
hibits the stochastic resonance effect, which is commonly
understood to be the noise-induced enhancement of the
system sensitivity to a weak signal [32] (although signal
weakness is not a necessary condition for the stochastic
resonance to occur [33]).
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Throughout this paper we assume discrete-time set-
ting, i.e., we denote the consequent responses of a sin-
gle stochastic neuronal unit as a vector of random vari-
ables (discrete or continuous) R = ({Ri}n

i=1)T, where
i indexes the time and (·)T denotes the transposition.
The response, Ri = ri, is invoked by stimulus, Θi = θi,
where the stimulus course in time is described by a n-
dimensional vector of random variables (r.v.) Θ. We
account for the memory of the neuron, so that Ri gen-
erally depends on current, but also on past stimulations
and responses. In the following we assume that the neu-
ronal model is realized by the stationary causal discrete-
time information channel with continuous input, fully de-
scribed by the conditional probability density function
f(r|θ), which factorizes as [3]

f(r|θ) =

n
∏

i=1

fi(ri|θi, θi−1, . . . , θ1, ri−1, . . . , r1). (1)

In our setting we do not consider channel feedback, i.e.,
dependence of current stimulus on past responses.

The two most well-known information measures,
Fisher information (FI) and Shannon’s mutual informa-
tion (MI), rely on f(r|θ). The FI (matrix) is often em-
ployed as a measure of the efficiency of the population
coding [6, 11],

J(θ|R) =
〈

[∇ ln f(r|θ)][∇ ln f(r|θ)]T
〉

r|θ
, (2)

where the gradient is with respect to θ, and 〈·〉
r|θ denotes

averaging with respect to f(r|θ). Throughout this paper
we assume that f(r|θ) is sufficiently continuous in θ, so
that the following regulatory conditions [34] hold

∫

R

∇f(r|θ) dr = 0,

∫

R

∇∇Tf(r|θ) dr = 0. (3)

FI imposes limits on the precision of θ estimation from
the responses, namely, for the variance of any unbiased
estimator of θi holds Var(θ̂i) ≥ [J−1(θ|R)]ii [34].

MI is the fundamental quantity measuring information
transfer in channels [4]. MI gives the degree of statistical
dependence between stimuli and responses and is defined
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as

I(Θ; R) =

〈

〈

ln
f(r|θ)

p(r)

〉

r|θ

〉

θ

, (4)

where p(r) = 〈f(r|θ)〉
θ

describes the marginal distribu-
tion of responses, and the averaging is with respect to
the distribution of stimuli, π(θ), so that MI is essen-
tially property of the joint distribution of stimuli and re-
sponses. The maximum value of MI per time step, taken
over all possible stimuli distributions, is the information
capacity (or capacity rate), C, defined as [4],

C = lim
n→∞

max
π(θ)

1

n
I(Θ; R). (5)

FI is a local quantity in the sense that for some θ0,
J(θ0|R) takes into account stimuli from an infinitesimal
neighbourhood of θ0. In other words, if we assume that
FI is a real quantity, i.e., something that can be mea-
sured and taken into account, then the stimuli from the
neighbourhood of θ0 have to be physically present, which
makes FI analogous to MI in the following sense. Let the
stimuli be restricted in amplitude, so that for some θ0

and ∆θ holds Θ ∈ [θ0 − ∆θ,θ0 + ∆θ] and ∆θi > 0. We
define a shifted r.v. δΘ as δΘ = Θ − θ0 and rewrite the
MI from Eq. (4) in terms of r.v. δΘ ∼ π(δθ) as

I(Θ; R) =

〈
∫

R

[ϕ(r,θ0 + δθ) − ψ(r,θ0 + δθ)] dr

〉

δθ

,

(6)
by further introducing

ϕ(r,θ0 + δθ) = f(r|θ0 + δθ) ln f(r|θ0 + δθ), (7)

ψ(r,θ0 + δθ) = f(r|θ0 + δθ) ln 〈f(r|θ0 + δθ)〉δθ . (8)

Now we consider the case of vanishing amplitude,
‖∆θ‖ ≥ ‖δθ‖ → 0, and expand I(Θ; R) in Eq. (6)
around θ0 in terms of δθ. It can be shown [35] that,

ln 〈f(r|θ0 + δθ)〉δθ ≈ ln f(r|θ0) + 〈δθ〉T ∇f(r|θ0)

f(r|θ0)
, (9)

where 〈δθ〉 = 〈δθ〉δθ, and thus the Taylor expansion of
ψ ≡ ψ(r,θ0 + δθ), is

ψ ≈ f ln f + δθT ln f∇f + 〈δθ〉T ∇f +

+
1

2
δθT ln f∇∇Tf δθ + δθT

∇f∇Tf

f
〈δθ〉 +

+
1

2
〈δθ〉T f

[∇∇Tf

f
− ∇f∇Tf

f2

]

〈δθ〉 , (10)

where f ≡ f(r|θ0) and ∇f ≡ ∇f(r|θ)|θ=θ0
. The anal-

ogous expansion of ϕ is straightforward. By substitut-
ing the expansions into Eq. (6) the zeroth- and first-
order terms cancel and what remains can be written in
terms of FI matrix evaluated at θ = θ0, by employing
J(θ0|R) = [J(θ0|R)]T, as

I(Θ; R) ≈ 1

2

〈

[δθ − 〈δθ〉]T J(θ0|R) [δθ − 〈δθ〉]
〉

δθ
,

(11)

and after taking the expectation

I(Θ; R) ≈ 1

2
tr [J(θ0|R)CΘ] , (12)

where CΘ is the covariance matrix of Θ and tr (·) is the
matrix trace. Eq. (12) holds for a broad class of chan-
nels with memory, both biologically-inspired and artifi-
cial, and represents the main result of this paper.

Next we concentrate on the interpretation and some
immediate implications of Eq. (12). First, the informa-
tion capacity from Eq. (5) follows readily from Eq. (12):
FI matrix is the property of the neuronal model, so the
stimulus properties are represented by CΘ. Maximizing
I(Θ; R) thus corresponds to extremizing the values of
[CΘ]ik for which the corresponding elements [J(θ0|R)]ik
are non-zero (with appropriate sign). E.g., for a memo-
ryless channel, f(r|θ) =

∏n

i=1 fi(ri|θi), so the FI matrix
is diagonal with elements [J(θ0|R)]ii = J(θ0|R) (omit-
ting the index i due to channel stationarity). The capac-
ity is thus achieved by maximizing the variance of the
amplitude-constrained stimulus, so the capacity-bearing
distribution is realized by two equiprobable probability
masses located at the interval extremes, and

C =
1

2
(∆θ)2J(θ0|R), (13)

a result obtained by different means in [20]. Gener-
ally, I(Θ; R) → 0 as the stimulus amplitude vanishes.
It is thus advantageous to introduce the MI (and ca-
pacity) per maximum stimulus power, i.e., Ī(Θ; R) =
I(Θ; R)/‖∆θ‖, so for the memoryless channel C̄ =
J(θ0|R)/2, as obtained in [20]. While the previously men-
tioned asymptotics of MI in terms of FI [6, 24] deals with
the low-noise limit of information transmission (i.e., large
neuronal populations), Eq. (12) describes the opposite
“large-noise” limit situation.

In the following we apply Eq. (12) on the classical
McCulloch-Pitts (MP) neuronal model, accounting for
the memory of the noise component. Memoryless vari-
ant of the MP model has been sucesfully employed in
describing the stochastic resonance effect in electrosen-
sory neurons of paddlefish [30], and further analyzed in
detail in [31, 36]. The MP model is based on threshold-
ing of the stimulus (corrupted by an additive noise X),
so that the discrete-valued response in time-step i is

Ri = U(θi +Xi − a), (14)

where a is the threshold, U(·) is the Heaviside step func-
tion and θi ∈ [−∆θ + θ0, θ0 + ∆θ] for all i. The oc-
currence of action potential at time i is indicated by
Ri = 1. In the following we consider the noise r.v.
X = {X1, . . . , Xn}T to be identically distributed but
dependent, which provides the memory effect for the
MP neuron. For simplicity, we assume in the follow-
ing that X ∼ p(x) is gaussian with covariance matrix
[CX]ik = σ2̺ik, where ̺ik = corr(Xi, Xk) is the serial
correlation coefficient. Obviously, since U is not invert-
ible, any simple form of dependence in the noise (such as
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first order Markov) is not preserved in the time sequence
of responses. Generally, the full joint distribution of R is
required, which means evaluation of n-dimensional gaus-
sian integrals, which may not be numerically stable. In
other words, the joint conditional probabilities Pr {R|θ}
are generally not tractable for reasonable values of n.
The idea is to substitute the full and untractable log-
likelihood, ℓ(θ|r) = ln f(r|θ), with a computable pseudo-
log-likelihood [37], ℓ(P )(θ|r), neglecting some high-order
dependencies, i.e.,

ℓ(P )(θ|r) =
∑

q

ℓ(P )
q (θ|r), (15)

where ℓ
(P )
q (θ|r) are “computable” partitions. Here we

concentrate on a variant of the second-order pseudo-log-
likelihood, ℓ(P )(θ|r) = ℓ2(θ|r), based on pairwise depen-
dence [38]

ℓ2(θ|r) =

n
∑

i=2

i−1
∑

k=1

ln Pr {Ri, Rk|θ}−(n−2)

n
∑

i=1

ln Pr {Ri|θ} ,

(16)
The advantage of ℓ2 is, that most of the involved integrals
can be expressed in a semi-closed form for the gaussian
noise. The problematics of replacing ℓ(θ|r) by ℓ2(θ|r)
for non-Markov models has been investigated recently in
statistical literature [38, 39]. The marginal probability
P1 of Ri = 1 (crossing the threshold) is independent of i
due to stationarity, and since Ri ∈ {0, 1}, we can write
Pr {Ri|θi} = riP1 + (1 − ri)(1 − P1), where

P1 =
1

2

[

1 − erf

(

a− θi√
2σ

)]

(17)

by evaluation of the gaussian integral and erf(·) is the
error function. Similarly, for the bivariate joint response
probability holds

Pr {Ri, Rk|θi, θk} = rirkP11 + ri(1 − rk)P10

+(1 − ri)rkP01 + (1 − ri)(1 − rk)P00, (18)

where Pmn = Pmn(θi, θk) is the probability of Ri =
m,Rk = n, so

∑

m,n Pmn = 1. Note, that P11 + P01 is
the marginal probability of Rk = 1, and P11 + P10 = P1

is the marginal probability of Ri = 1. Eq. (17). These
symmetries and Eq. (17) give

P11 =

∞
∫

0

1

2

[

1 + erf

(

θi − a+ (a− θk + y)̺ik

σ
√

2 − 2̺2
ik

)]

×

× φ(y − θk + a) dy, (19)

P01 =
1

2

[

1 − erf

(

a− θk

σ
√

2

)]

− P11, (20)

P10 =
1

2

[

1 − erf

(

a− θi

σ
√

2

)]

− P11, (21)

P00 = 1 − P11 − P01 − P10. (22)

where φ(·) is the probability density function of a gaus-
sian r.v. with zero mean and variance equal to σ2 (note
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FIG. 1. Information capacity (in bits) per vanishing stimu-
lus power of McCulloch-Pitts neuronal model with memory.
The noise is a gaussian AR(1) process with first-order serial
correlation ̺ and variance σ2. Stimulation parameters are:
θ0 = 0 and threshold a = 1. Three situations are shown:
no memory (se also [31, 36], corresponds to ̺ = 0), Markov

(assuming the first-order Markov structure of responses) and
pseudo-log-likelihood, ℓ2-approximation to the true situation,
estimated for n = 100. The memory of the neuron enhances
its information capacity, by reducing the disruptive power of
the noise. Note, that positive noise correlations increase ca-
pacity more than negative ones.

that Pmn are functions of θi, θk, a, σ and ̺ik). The FI
matrix will have generally all elements non-zero, and its
approximation by ℓ2 is

[J(θ|R)]ik = −
∑

r1,...,rn

∂2ℓ2(θ|R)

∂θi ∂θk

×

× Pr {[R1 = r1, . . . , Rn = rn]|θ} , (23)

where the sum is over all possible n-dimensional vec-
tors, consisting of 0’s and 1’s. Due to particular form
of ℓ2(θ|T), however, things are a lot simpler, although
details of the following calculations will be published else-
where. For the off-diagonal, i 6= k, and diagonal elements
evaluated at θi = θk = θ0 holds

J(θ|R)ik = γ
(

θ0, a, σ, ̺ik, P̃11, φ̃01

)

, (24)

J(θ|R)ii = ω
(

θ0, a, σ, ̺ii, P̃11

)

, (25)

where γ(·) and ω(·) are complicated (but tabulated) func-
tions of the indicated parameters, and

P̃11 = P11(θ0, θ0), (26)

φ̃01 =
∂

∂θk

P11(θ0, θk)

∣

∣

∣

∣

θk=θ0

. (27)
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Employing Eq. (12) gives the covariance matrix of the
optimal stimulation as

[CΘ]ik = (∆θ)2 sgn ([J(θ0|T)]ik) , (28)

where sgn(·) is the signum function. The capacity rate
per vanishing stimulus power is then

C̄ = lim
n→∞

1

2n

∑

i,k

|[J(θ0|T)]ik|. (29)

Fig. 1 shows how the memory of the neuron enhances
its information capacity (shown as a capacity per vanish-
ing stimulus power). We assumed that the noise r.v. X

is modelled by the AR(1) gaussian discrete-time process
with first-order correlation ̺, so that [CX]ik = σ2̺|i−k|.
The enhancement is compared to the already investi-
gated ̺ = 0 case (no memory) [31, 36]), which exhibits
the effect of stochastic resonance as the variance of the
noise increases. The information transferred increases
with memory, since the noise correlations effectively re-
duce its “corrupting” power (once the stimulus statistics
is properly matched to the noise structure, as shown by
Eq. (12)). The no memory values are identical in all
cases, since the noise correlations are ignored. Besides
the ℓ2-approximation, the first-order Markov approxima-
tion is also shown, obtained by setting n = 2 in Eq. (16).
For Markov approximation the information capacity is
lower, since the neuron employs only current and immedi-
ately preceeding response value in the decoding, neglect-
ing the possibilities of the essentially infinite-memory of
the MP neuron. Additional numerical calculations show,
that even small noise correlations (̺ ≈ 0.2) increase the

capacity rates of the MP neuron by approx. 15 % (not
shown in Fig. 1).

Our results lead us to comment on the optimality of
information transfer in real neurons. While the effi-
cient coding hypothesis relies on the maximum informa-
tion transfer, one should keep in mind, that from the
information-theoretic perspective the coding-decoding
operations are an integral part of the information trans-
mission process. First, it is well known [4], that for some
channels the optimal decoding process can be a very com-
plex task – i.e., employing all the responses obtained so
far, as illustrated in this paper on a relatively simple ex-
ample of the MP neuron with memory. Since the nervous
system is assumed to respond to spike trains in real time
[29], it is questionable that real neurons try to achieve
the true capacity and additional costs must be taken into
account [40]. Second, the discrete, or impulse-like, char-
acter of capacity-bearing stimulation is not limited only
to vanishing stimulus amplitudes. This phenomenon oc-
curs in most channels examined in literature so far (with
power-constrained AWGN channel, and low-noise limit
channels being the only known exceptions) [41]. Another
possible problem connected with the usage of a continu-
ously varying stimulus is, that the complete specification
of particular θ requires infinite amount of information,
while real neurons probably do not strive for precise spec-
ification of θ.
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