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Abstract

The limits on maximum information that can be transferred by single neurons help us to

understand how sensory and other information is being processed in the brain. In this

paper we approximately calculate the information capacity of the perfect integrate-and-fire

neuronal model in dependence on the stimulus range, assuming the simplest form of temporal

coding scheme. We couple the information transfer with metabolic cost of neuronal activity

and we find that the optimal information per metabolic cost ratios may occur for a relatively

small stimulus range.
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1. Introduction

It is generally accepted that neurons communicate using series of action potentials (spike

trains) via chemical and electrical synapses, in a process known as synaptic transmission.

One of the fundamental questions in computational neuroscience is the quantification of

information transferred and processed by spiking neurons. There are two main hypotheses

that describe the representation of information in neuronal output (Kostal et al., 2007;

Theunissen and Miller, 1995; Perkel and Bullock, 1968). In the first, denoted as the rate (or

frequency) coding hypothesis, information is represented by the neuronal firing rate. The

firing rate is defined differently by different authors, e.g., as the number of spikes per fixed

time window or as the inverse of the mean interspike interval (ISI), see Lansky et al. (2004)
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for a review. In the second hypothesis, denoted as the temporal coding, features of the

spiking activity beyond the firing rate are employed. For example, time to the first spike

after the stimulus onset, characteristics based on the second and higher statistical moments

of the ISI probability distribution, or precisely timed groups of spikes (temporal patterns)

are candidates for temporal codes (Buracas and Albright, 1999; Kostal et al., 2007).

Information theory is a mathematical framework that provides tools for quantification of

information content and information transfer in systems defined by probabilistic rules (Gal-

lager, 1968). First studies on information transfer in neurons appeared relatively shortly af-

ter Shannon published the theory (Jacobson, 1950; MacKay and McCulloch, 1952; Quastler,

1953). Neuronal information capacities estimated in these studies differ enormously, in the

orders of magnitude. The reason lies in employing different coding schemes and also in

neglecting the degree of intrinsic ISI variability (Stein, 1967). Probably the first theoretical

study of the limits on the information transfer in neuronal models (assuming the rate cod-

ing) was done by Stein (1967). Since then, optimality conditions on information transfer in

neuronal populations or single neuronal models were analyzed under varying assumptions

on the properties of the model, stimulus or the code (e.g., additive Gaussian noise, low-

or high-noise limits, etc.), see Brunel and Nadal (1998); Bulsara and Zador (1996); Kostal

and Lansky (2010); de Ruyter van Steveninck and Laughlin (1996); Machens et al. (2005);

McDonnell and Stocks (2008) for more details. More recently, Ikeda and Manton (2009) nu-

merically calculated the information capacity of both rate and temporal codes in a neuronal

model with gamma distribution of ISIs, however, their method is not directly applicable to

any neuronal model of choice or stimuli restrictions. Numerical studies with little or no as-

sumptions are rare, mainly due to complicated nature of the involved calculations (Dauwels,

2005; Gallager, 1968).

In this paper, we apply a simple method to calculate information capacity of the the

perfect integrate-and-fire model (Tuckwell, 1988) using the temporal coding scheme for a

small stimulus range. The trade-off for the approximate nature of our results is, that the

method is essentially free of any restrictive assumptions on the neuronal model.
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2. Methods

2.1. Information transfer using the temporal code

The ISI lengths in a spike train often vary, apparently randomly at least to some degree,

both within and across trials (Shadlen and Newsome, 1998; Stein et al., 2005). Therefore

only the probability that a spike occurs can be given, describing the ISI by a random variable

T with probability density function (p.d.f.) f(t). Let θ be the stimulus intensity then the

p.d.f. of ISIs evoked by this stimulus is denoted as f(t|θ). The conditional p.d.f. f(t|θ) fully

describes the properties of neuronal model from the temporal coding point of view. During

stimulation, stimulus values cannot be known beforehand (from the “point of view” of the

neuron), thus the stimulus is described by a random variable Θ with p.d.f. π(θ).

Within the framework of information theory, the information provided about the stimulus

Θ = θ by observing the response T = t is defined as (Gallager, 1968)

I(θ; t) = log2
ϕ(θ|t)
π(θ)

, (1)

where ϕ(θ|t) is the contitional p.d.f. of Θ given ISI, T = t. The most informative stimulus-

response pairs are those, where the response t can be used to “identify” θ with high specificity,

i.e., with high a posteriori to a priori probability ratio (Gallager, 1968). The p.d.f. ϕ(θ|t)

is usually difficult to calculate, thus the Bayes’ law is used to write Eq. (1) equivalently as

I(θ; t) = log2
f(t|θ)
f(t)

, (2)

where the (unconditional) ISI p.d.f. p(t) is

f(t) =

∫
Θ

f(t|θ)π(θ) dθ. (3)

The average value of I(θ; t) taken over all stimulus-response pairs is denoted as the

mutual information, I(Θ;T ), between stimuli and responses,

I(Θ;T ) =

∫
Θ

∫
T

I(θ; t)f(t|θ)π(θ) dt dθ. (4)

The value of I(Θ;T ) gives the average number of bits per ISI that can be transmitted reliably

by the neuron, represented by f(t|θ), using the stimulus p.d.f. π(θ). Of particular interest
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is the maximum rate of reliable information transmission, denoted as information capacity

C,

C = max
π(θ)

I(Θ;T ), (5)

where the maximum is taken over all possible stimulus distributions. Usually, the set of

possible stimuli is restricted, e.g., Θ has finite variance or range (Gallager, 1968). In this

paper we examine the situation when Θ is known to take values in a given range [θmin, θmax].

Most often, Eq. (5) cannot be solved in a closed form. Numerical methods must be used,

and these can be rather involved unless stimulus is known beforehand to take only finitely

many different values (Dauwels, 2005). We employ a simple capacity approximation, which

is valid if the neuronal response is weakly tuned to the variation of stimulus over the given

range (information transmission under small signal-to-noise ratio, see Fig. 1). In the limit of

vanishing stimulus range the capacity-achieving stimulus distribution is binary (Huang and

Meyn, 2005; Kostal, 2010), with equiprobable masses located at θmin and θmax. The lower

bound on the true capacity, C ≥ Cbin, thus follows

Cbin =
1

2

∫
T

I(θmin; t)f(t|θmin) dt+

+
1

2

∫
T

I(θmax; t)f(t|θmax) dt,

(6)

where p(t) in the definition of I(θ; t), Eq. (2), is p(t) = [f(t|θmin)+ f(t|θmax)]/2. Despite the

simplicity of the binary approximation, Eq. (6), the difference C − Cbin is usually negligible

for Cbin < 0.8 bits, see (Forney and Ungerboeck, 1998; Huang and Meyn, 2005; Kostal, 2010)

for more details and examples.

2.2. Perfect integrate-and-fire neuronal model

We consider a primitive model of neuronal firing, in which the presynaptic excitatory and

inhibitory inputs arrive randomly, according to two independent Poisson processes (Tuckwell,

1988). The value of the membrane depolarization at time t, V (t), satisfies

V (t) = a[NE(t)−NI(t)], (7)
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where a is the magnitude of a single inhibitory or excitatory input, NE(t) and NI(t) are

the counts of excitatory and inhibitory inputs with respective intensities λ and ω, and

V (0) = 0mV. The action potential is emitted once the depolarization reaches the threshold

S, after which the depolarization is reset back to zero. We assume that λ > ω and that S/a

is an integer for simplicity.

If the input rates λ and ω are sufficiently high, and the ratio a/S small, the depolarization

in Eq. (7) can be approximated by a Wiener process, V̄ (t), with drift µ and variance σ2,

V̄ (t) = µt+ σW (t), (8)

whereW (t) is the standard Wiener process (Tuckwell, 1988). The parameters of the original,

Eq. (7), and approximative, Eq. (8), models are related as (Lansky and Sacerdote, 2001;

Tuckwell, 1988)

µ = a(λ− ω), (9)

σ = a
√
λ+ ω. (10)

The model in Eq. (8) is known as the diffusion approximation of the perfect integrate-and-

fire (PIF) model given by Eq. (7). Since in this paper we deal with the approximate model

only, Eq. (8), we denote it simply as the PIF model. The probability density of ISIs of the

PIF model is the inverse Gaussian density (Tuckwell, 1988),

f(t|λ, ω) = S√
2π(λ+ ω)a2t3

exp

{
− [S + (ω − λ)at]2

2(λ+ ω)a2t

}
. (11)

The ISI density of the PIF model is often given in terms of µ and σ from Eq. (8), however,

the parametrization in terms of λ and ω reflects the original model in Eq. (7) better and is

often considered as physiological (Lansky and Sacerdote, 2001; Tuckwell, 1988).

2.3. Stimulus parametrization

Three main regimes to stimulate the PIF neuron were proposed in Lansky and Sacerdote

(2001):
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Figure 1: Relationship between the stimulus and the average output firing rate of the perfect integrate-

and fire neuronal model. The stimulus is the excitation rate λ (the inhibition rate ω is assumed constant),

restricted to the interval [λmin, λmax]. Each value of λ evokes a spiking activity with firing rate ν. The evoked

activity is not perfectly regular, the lengths of interspike intervals vary according to the probability density

function f(t|λ), which represents the stimulus-response relationship from the temporal coding point of view.

If the stimulus range is small, the two extremal densities f(t|λmin) and f(t|λmax) overlap significantly,

resulting in an information transmission under low signal-to-noise ratio conditions.

1. The excitation rate, λ, is increasing while the inhibition rate ω = ω0 is kept constant.

In this case θ = λ.

2. The excitation rate λ = λ0 is kept constant while the inhibition rate ω is decreasing,

thus θ = ω.

3. Both rates increase proportionally, λ = qω, with constant q > 1. Here we can choose

either θ = λ or θ = ω.

The stimulus, θ, has different interpretation in each of the regimes (excitation or inhibi-

tion rate). In order to compare the stimulation regimes meaningfully by using a common

scale, we parametrize the stimulus by the (average) neuronal output it evokes (Stein, 1967).

We choose the output firing rate, ν = 1/ ⟨T ⟩ , as the stimulus parameter for two reasons,

i) the metabolic cost of neuronal activity is directly proportional to ν (see next section),

ii) ν is linear in both λ and ω, see Fig. 1, since from Eq. (11) follows

ν =
a(λ− ω)

S
. (12)
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The average (unconditional) output firing rate, ⟨ν⟩, is the inverse of the mean ISI of the

p.d.f. f(t) from Eq. (3),

⟨ν⟩ =
[∫

T

∫
Θ

tf(t|θ)π(θ) dθ dt
]−1

. (13)

Next, we adjust the parameters of each regime above so, that the stimulus range

[νmin, νmax] is equal in all three cases.

1. The range of the excitation rate, [λmin, λmax], and the inhibition rate ω0 are selected

freely, so that ω0 < λmin. The stimulus is θ = ν = a(λ− ω0)/S.

2. The condition on the equality of the stimulus range results in the following equations

for the range of the inhibition rate,

ωmin = λ0 − λmin + ω0, (14)

ωmax = λ0 − λmax + ω0, (15)

where the excitation rate λ0 is selected freely, provided that λ0 > ωmax, thus θ = ν =

a(λ0 − ω)/S.

3. We set ω as the varying parameter in this case, the equality of the stimulus range gives

ωmin =
λmin − ω0

q − 1
, (16)

ωmax =
λmax − ω0

q − 1
, (17)

where the coefficient of proportionality, q > 1, is selected freely, and θ = ν = aω(q −

1)/S.

2.4. Metabolic cost of spiking activity

Neurons use significant amount of energy for the spiking activity, thus energy usage is

coupled to the effectivity of neuronal information transfer (Laughlin et al., 1998). The-

oretical results from biologically relevant single-compartment neuronal models show, that

metabolic cost of spiking activity increases linearly over a wide range of firing frequencies

(Balasubramanian and Berry II, 2002).
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The average metabolic costW (in ATP molecules per second) of spiking activity resulting

from stimulus p.d.f. π(θ) can be thus defined as

W = κ ⟨ν⟩ . (18)

The constant of proportionality κ describes the metabolic cost of a single spike, and its value

is estimated (for sensory neurons) to lie in the range from 9× 105 to 9× 107 ATP molecules

(Laughlin et al., 1998). For the purpose of this paper we set κ = 9× 106. Alternatively, we

consider the quantity

Wadd = κ(⟨ν⟩ − νmin), (19)

which describes the additional metabolic cost with respect to the smallest (basal) firing

rate, see Fig. 1. In other words, the metabolic cost Wadd of spiking activity when there is no

stimulus, ⟨ν⟩ = νmin, is zero. We are motivated by the fact, that many neurons show some

level of spontaneous activity. Thus Wadd describes the metabolic cost of actual information

transfer.

3. Results

The three stimulation regimes described in Section 2.3 have common output firing rates,

but their temporal coding properties are expected to differ. Indication is provided by the ISI

coefficient of variation, CV , the ratio of standard deviation to mean ISI, which is frequently

used to describe ISI variability. From Eq. (11) we have

CV =

√
a(λ+ ω)

S(λ− ω)
, (20)

thus regimes 1 and 2 (increasing λ, decreasing ω) result in a monotonically decreasing CV

(with different values), while regime 3 (proportional increase of λ and ω) results in a constant

CV =
√

[a(q + 1)]/[S(q − 1)].

We calculate the approximate capacity by employing Eq. (6) for the three stimulation

regimes in dependence on the stimulus range. In other words, we fix νmin while increasing

νmax. Two examples are analyzed to demonstrate, that the relative information efficiency

8



of regimes 1, 2 and 3 is not absolute, but depends on how the free parameters are selected.

The parameter values are within the physiological range proposed in Lansky and Sacerdote

(2001).

In the first example, Fig. 2a–c, the input excitatory rate λ is set large when compared

to the inhibitory rate (λmin = 180 > 150 = ω0). The dependence of CV of ISIs of the evoked

activity on the stimulus value for all three regimes is shown in Fig. 2a. The relatively

small range of CV for regime 1 (from 0.3 to 0.47) indicates small variability of ISIs, thus

the ISI length encodes the stimulus value more reliably than in the other regimes. This is

confirmed in Fig. 2b, which shows the information capacity per single ISI. The regime 3 has

largest overall CV and correspondingly the poorest information performance. The maximal

information transfer per metabolic cost Wadd is shown in Fig. 2c. Although concerns about

precision of the capacity approximation do not allow us to extend the stimulus range, it is

likely that the optimal value of information per metabolic cost in regime 1 is reached soon

beyond νmax = 2. Also, note that regime 3 slightly outperforms regime 2 for νmax < 1.1.

The second example is presented in the Fig. 2d–f. In this case, the inhibitory and

excitatory input rates are in their upper range (Lansky and Sacerdote, 2001) and are initially

almost balanced (λmin = 500 > 490 = ω0). The range of CV over the given stimulus range is

quite large for regimes 1 and 2, resulting in both sub-Poisson (CV < 1) and supra-Poisson

(CV > 1) ISI variability (Fig. 2d.). Regime 1 has the largest overall CV and correspondingly

its information performance is poorest (Fig. 2e). On the other hand, it is difficult to estimate

the relative information performance of regimes 2 and 3 based on CV only. Fig. 2e shows, that

even though CV of regime 2 is smaller for more than a half of the stimulus range (ν > 0.55)

than that of regime 3, its information efficiency is always smaller. The information per

additional metabolic cost (Fig. 2f) shows that regime 3 performs significantly better than

the other two especially for small stimulus range. Generally, since the CV of the third regime

is constant, its performance improves with smaller CV . The best performance is obtained

in the limit q → ∞, which gives CV =
√

a/S.
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4. Discussion and Conclusions

The presented results give the upper bound on information transfer by the PIF neu-

ronal model using the temporal coding scheme. However, achievability of such information

transfer needs to be discussed. First, the temporal coding scheme implicitly assumes that

the stimulus value is kept constant until the spike is generated, after which the stimulus

changes until the next spike and so on. This is an idealization which requires unrealistic

synchronization between stimuli and responses. This problem was also discussed in Ikeda

and Manton (2009), but no obvious solution was found. In any case, the true capacity must

be lower than that resulting from this idealization. Second, channel capacity gives the upper

bound on reliable information transfer, e.g., the PIF neuron can be theoretically used, by

appropriately changing the stimulus values, to transmit 100 bits of information, at C bits/ISI

on average, and these 100 bits can be recovered exactly from the responses (with arbitrarily

small probability of error). Shannon’s channel coding theorem ensures that such procedure

(coding and decoding operation) exists (Gallager, 1968). However, it is known that the

capacity-achieving coding-decoding schemes are incredibly complex and hard to implement

practically (Gallager, 1968). The complexity of such operations can be sometimes reduced

greatly in the presence of feedback (the dependence of current stimulus on past responses)

or by including some fidelity criterion on the approximate reconstruction of the true sensory

input (Gallager, 1968; Gastpar et al., 2003). We have not included these possibilities in

our current effort. Rather, we take the traditional point of view in computational neuro-

science and maximize just the mutual information between stimuli and responses (Atick,

1992; Kostal et al., 2008; Machens et al., 2005; Stein, 1967).

The PIF model employed here was chosen for its analytical tractability (Tuckwell, 1988)

and its frequent usage in experimental data analysis (Pouzat and Chaffiol, 2009). The

simplicity of the PIF model comes at a price of ignoring the spontaneous decay of membrane

potential, so it can be considered as a valid approximation only if the membrane time

constant and/or the overall excitation rate are sufficiently large. Furthermore, the PIF

model has no memory, the current response does not depend on past stimuli or responses.
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In the presence of memory, the capacity approximation presented here is not valid and

different methods must be used (Kostal, 2010).

In this paper we have analyzed the upper bound on reliable information transfer in

the PIF neuronal model using the temporal code. We employed a binary approximation

to channel capacity, valid if the stimulus range is relatively small. Three different stimu-

lation regimes were employed: 1. increasing excitation rate, 2. decreasing inhibition rate

and 3. increasing both rates proportionally. These three schemes were mutually compared.

Our results show, that the relative efficiency of these three regimes changes depending on

the disbalance between overall excitatory and inhibitory rates. We found, that the optimal

information transfer per additional metabolic may occur for relatively small input ranges.

Although restricted only to relatively small stimuli ranges, the obtained values of capacity

per ISI are similar to those obtained by Ikeda and Manton (2009) for the temporal coding

scheme of the neuron with gamma distribution of ISIs.
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Figure 2: Approximate information capacity of the perfect integrate-and-fire neuronal model using the tem-

poral code. Three stimulation regimes are investigated: 1. increasing excitation rate (solid), 2. decreasing

inhibition rate (dashed) and 3. increasing both rates (dotted). Note, that the stimulus is uniquely param-

eterized by the mean firing rate ν, which provides a common scale for the three regimes, see also Fig. 1.

Parameters (a–c): S = 10mV, a = 0.2mV, λmin = 180, λmax = 250, ω0 = 150, λ0 = 350, q = 1.1,

νmin = 0.6. Parameters (d–f): S = 10mV, a = 0.2mV, λmin = 500, λmax = 550, ω0 = 490, λ0 = 300,

q = 1.1, νmin = 0.2. Note, that the relative information efficiency of the regimes in the bottom row is

reversed when compared to the top row.
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