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Information capacity and its approximations under metabolic cost in a simple
homogeneous population of neurons

Lubomir Kostala) and Petr Lansky
Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4,
Czech Republic

We calculate and analyze the information capacity-achieving conditions and their approximations in a simple neuronal
system. The input-output properties of individual neurons are described by an empirical stimulus-response relationship
and the metabolic cost of neuronal activity is taken into account. The exact (numerical) results are compared with a
popular “low-noise” approximation method which employs the concepts of parameter estimation theory. We show, that
the approximate method gives reliable results only in the case of significantly low response variability. By employing
specialized numerical procedures we demonstrate, that optimal information transfer can be near-achieved by a number
of different input distributions. It implies that the precise structure of the capacity-achieving input is of lesser impor-
tance than the value of capacity. Finally, we illustrate on an example that an innocuously looking stimulus-response
relationship may lead to a problematic interpretation of the obtained Fisher information values.
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1. INTRODUCTION

The information theory (Gallager, 1968) provides an at-
tractive methodology for the theoretical approach to the prob-
lem of information processing in neuronal systems, see, e.g.,
works of Brunel and Nadal (1998); Borst and Theunissen
(1999); McDonnell, Ikeda, and Manton (2011); Stein (1967);
Fairhall et al. (2001); Farkhooi, Müller, and Nawrot (2011);
Wiener and Richmond (1999); Rieke et al. (1997); Kostal
(2012) among many others. Of particular interest are usu-
ally the optimality conditions under which the information
between stimuli and responses is maximized (Atick, 1992;
Bialek and Owen, 1990; Laughlin, 1981, 1996; McDonnell
and Stocks, 2008; Kostal, Lansky, and Rospars, 2008). The
motivation stems from the efficient-coding hypothesis (Bar-
low, 1961; Atick, 1992), which states that the sensory neu-
rons are adapted, in the information optimality sense, to the
statistical properties of the signals to which they are naturally
exposed.

Although it is universally accepted that neurons communi-
cate using series of action potentials (spike trains) via chem-
ical and electrical synapses, the exact structure of neuronal
code is not yet fully resolved (Shadlen and Newsome, 1994;
Stein, Gossen, and Jones, 2005). For the illustration we adopt
the classical frequency coding scheme, where the information
sent along axon is encoded in the number of spikes per ob-
servation time window (the firing rate) (Adrian, 1928). In
most sensory systems, the firing rate increases, generally non-
linearly, with increasing stimulus intensity (Kandel, Schwartz,
and Jessel, 1991). Any information possibly encoded in the
temporal structure of the spike train is, however, ignored.

Characterization of the input-output properties of neurons,
as well as of the neuronal models, is commonly done by so-
called frequency (input-output) transfer functions in which the
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output is plotted against the strength of the input signal (e.g.,
stimulus intensity) (Lansky, Rodriguez, and Sacerdote, 2004;
Carandini, 2004). The output is usually the frequency of fir-
ing, but it can be the level of any variable of interest, e.g., first-
spike latency, channel conductance, receptor potential or its
peak amplitude (Kostal, Lansky, and Rospars, 2008; Laugh-
lin, 1981; Gremiaux et al., 2012; McDonnell et al., 2012).
The transfer function is usually presented as a single curve,
relating the mean (or the average of experimental measure-
ments) response to each stimulus intensity. Since the response
firing frequency often varies, apparently randomly at least to
some degree, both within and across trials (Shadlen and New-
some, 1998; Stein, Gossen, and Jones, 2005), the curve is
sometimes accompanied by standard deviations (Borst and
Theunissen, 1999; Mountcastle, Poggio, and Werner, 1963).
However, The complete descriptor of the input-output rela-
tionship under this scenario would be the full probability dis-
tribution of responses for each possible stimulus intensity.

Neurons also use significant amount of energy for the spik-
ing activity, thus energy usage should be coupled to consid-
erations about the efficiency of neuronal information transfer
(Laughlin, de Ruyter van Steveninck, and Anderson, 1998;
Levy and Baxter, 1996, 2002; Kostal, Lansky, and Mc-
Donnell, 2013). Attwell and Laughlin (2001) used anatomic
and physiologic data to analyze the metabolic cost of differ-
ent components of excitatory signaling, their results are em-
ployed in this paper when considering optimal information vs.
metabolic cost ratios.

The goal of this paper is to extend the effort started in
Kostal, Lansky, and McDonnell (2013). We analyze single
neurons and their groups, where the group activity is the sum
of individual neuronal activities. In particular, we identify the
regions of validity and assess the precision of the low-noise
approximate expressions (based on the concept of Fisher in-
formation) in dependence on the number of neurons. By em-
ploying specialized numerical procedures we show, that op-
timal information transfer can be near-achieved by a number
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of different input distributions, which implies that the precise
structure of the capacity-achieving input is of lesser impor-
tance than the value of capacity.

2. METHODS

2.1. Information capacity and capacity-cost function

As mentioned in Introduction, the complete input-output
properties of the neuron (under the assumption of frequency
coding) are described by the probability distribution of re-
sponses for each possible stimulus value. For the purpose of
this paper we thus identify the conditional probability density
function (p.d.f.) f (r |θ) with the statistical neuronal model,
where θ is the stimulus strength (the “intensity” or just the
“label” of stimulus feature), and r denotes the response firing
rate. Probability distributions employed in this paper may be
continuous or discrete, the specific type follows from the text.

Information about some particular stimulus, θ, based on ob-
serving the response r , can be defined as (Gallager, 1968)

I (θ; r) = ln
φ(θ |r)
p(θ)

= ln
f (r |θ)
f (r)

, (1)

where p(θ) is the p.d.f. over the stimulus ensemble and φ(θ |r)
is the p.d.f. describing the relative frequencies of possible
stimuli intensities conditioned that response r was observed.
The definition above can be justified intuitively, since the most
informative stimulus-response (S-R) pairs are those, in which
the response r can be used to “identify” θ with high a pos-
teriori to a priori probability ratio. Since the p.d.f. φ(θ |r)
is usually unknown, the Bayes’ law is used to obtain the last
equality in Eq. (1), where f (r) =

∫
Θ

f (r |θ)p(θ) dθ.
The mean value of I (θ; r) taken over all S-R pairs in the

stimulus ensemble Θ (described by the p.d.f. p(θ)) and the
response ensemble R ∼ f (r) (described by the p.d.f. f (r)), is
denoted as the mutual information, I (Θ; R),

I (Θ; R) =

∫
Θ

∫
R

I (θ; r) f (r |θ)p(θ) dr dθ. (2)

The maximal information that can be transferred is called the
information capacity,

C = max
p(θ)

I (Θ; R), (3)

where the maximum is taken over all possible input distribu-
tions.

If the noise in information transfer is substantially low,
there exists a lower bound, Ilow(Θ; R), on the mutual informa-
tion from Eq. (2), employed e.g., in Bernardo (1979); Brunel
and Nadal (1998); Clarke and Barron (1990); Kostal, Lansky,
and McDonnell (2013); McDonnell and Stocks (2008). One
neat feature of the low-noise approximation lies in the fact,
that it relates the concept of mutual information with the con-
cept of Fisher information known from the estimation theory
(Lehmann and Casella, 1998; Kay, 1993). We provide a brief
informal derivation as follows; see e.g., Brunel and Nadal

(1998) for details. The true stimulus intensity, θ, is identi-
fied (i.e., estimated) from the responses based on an estimator,
θ̂(r). The data-processing inequality (McEliece, 2002) states,
that mutual information between the ensemble of stimuli, Θ,
and the ensemble of their estimates, Θ̂, cannot be greater that
mutual information between stimuli and responses,

I (Θ; Θ̂) ≤ I (Θ; R). (4)

Mutual information, I (Θ,Θ̂), can be equivalently written
as (Gallager, 1968)

I (Θ; Θ̂) = h(Θ̂) −
∫
Θ

p(θ)h(Θ̂|θ) dθ, (5)

where h(Θ̂) is the differential entropy (informally, the un-
certainty; see Gallager (1968) for details) of the uncondi-
tional distribution of the estimator ensemble, and h(Θ̂|θ) is
the “uncertainty” of the estimator ensemble given some par-
ticular stimulus intensity θ. If the estimator θ̂(r) is not biased
(its mean value corresponds to θ), then there exists a lower
(Cramer-Rao) bound on the mean squared error of the estima-
tor (Pitman, 1979),∫

R

(θ̂(r) − θ)2 f (r |θ) dr ≥ 1
J (θ |R)

, (6)

where J (θ |R) is the Fisher information,

J (θ |R) =

∫
R

[
∂ ln f (r |θ)

∂θ

]2

f (r |θ) dr. (7)

Next, assume that an efficient estimator exists, i.e., the in-
equality in Eq. (6) becomes equality. Since the maximum pos-
sible value of entropy for a given variance σ2 is known to be
ln
√

2πeσ2 (Gallager, 1968), it follows by employing Eq. (6)
that

h(Θ̂|θ) ≤ ln

√
2πe

J (θ |R)
. (8)

In the low-noise limit the estimator is peaked about its true
value, so it holds h(Θ̂) � h(Θ) =

∫
Θ

p(θ) ln p(θ) dθ, and
thus Eqns. (4) and (8) can be combined to give I (Θ; R) ≥
Ilow(Θ; R),

Ilow(Θ; R) = −
∫
Θ

p(θ) ln
p(θ)

√
2πe

J (θ |R)

 dθ, (9)

where the approximation becomes tight as the response vari-
ability decreases (Brunel and Nadal, 1998; Rissanen, 1996).

Standard Euler-Lagrange method to maximize Ilow(Θ; R)
with respect to p(θ) can be applied, yielding the low-noise
approximation to the capacity, C ≥ Clow,

Clow = ln

∫
Θ

√
J (θ |R) dθ√

2πe
, (10)

with optimizing p.d.f. p(θ) ∝ √J (θ |R) (also known as the Jef-
frey’s prior (Bernardo, 1979)). Note, that the Euler-Lagrange
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method leading to Eq. (10) requires p(θ) to be differentiable,
confined to finite stimulus range and also strictly positive over
this range.

Denote the metabolic cost of neuronal response r as v(r).
The actual form of v(r) depends on the response character
considered (firing rate, latency, . . . ). The cost of neuronal ac-
tivity evoked by stimulus θ is thus

w(θ) =

∫
R

f (r |θ)v(r) dr. (11)

The mean metabolic cost, Wp , associated with the stimulus
ensemble described by p.d.f. p(θ) is

Wp =

∫
Θ

w(θ)p(θ) dθ. (12)

The capacity-cost function (McEliece, 2002), C(W ), gives
the information capacity under the additional constraint that
the average metabolic cost Wp does not exceed some selected
value W ,

C(W ) = max
p(θ),Wp≤W

I (Θ; R). (13)

In many cases of interest the (unconstrained) capacity C is
achieved at some finite value of W , which we denote as W †,
i.e., C = C(W ) for all W ≥ W †.

The optimal balance between the information capacity and
metabolic cost is given by the capacity per unit cost (Verdu,
1990),

C∗ = max
W

C(W )
W

. (14)

The inverse value, 1/C∗, can be interpreted as the minimal
possible cost of a reliably transmitted bit. Furthermore, we
define the capacity at optimal cost, C(W ∗), where W ∗ is the
optimal cost solving Eq. (14), if the solution exists. Apply-
ing the Euler-Lagrange method on Eq. (9), while taking the
metabolic cost into account, gives the following low-noise ap-
proximation to the optimal p.d.f.

p(θ) =
1
Z

√
J (θ |R)

2πe
exp[λWw(θ)], (15)

where Z is the normalization factor and λW is the Lagrange
multiplier associated with the average metabolic cost. De-
tailed derivation of Eq. (15) is presented in Kostal, Lansky,
and McDonnell (2013). Both Z and λW must be found numer-
ically. The approximation to the capacity-cost function evalu-
ated at W is obtained by maximizing Clow for all Wp ≤ W .

Since Eqns. (3), (13) and (14) can rarely be solved in a
closed form, we present an efficient exact (numerical) op-
timization procedure (Huang and Meyn, 2005) usable for
all general cases of practical interest (see details in the Ap-
pendix). The low-noise approximation requires the mean
E(R|θ) of the S-R model f (r |θ) to be monotonic as a function
of θ, plus some minor technical conditions on the character of
the response variability (Brunel and Nadal, 1998; Rissanen,
1996). However, the original Shannon’s theory was proposed

under rather broad assumptions (Gallager, 1968), and thus the
presented numerical methods are valid for a much broader
class of S-R relationships (sigmoidal or not), see (Huang and
Meyn, 2005) for some nonrestrictive technical conditions.

2.2. Stimulus-response characteristics

In this paper we employ an empirical stochastic S-R re-
lationship described in Lansky, Pokora, and Rospars (2008).
The average, m(θ), and the standard deviation, σ(θ), of the
evoked firing rate are given by

m(θ) =
49.5

1 + exp(3.5 − θ)
, (16)

σ(θ) =8.75 exp
−

(
θ − 6.5

4.8

)2 +

+ 29.9 exp
−

(
θ − 6.1

1.1

)2 , (17)

with θ in range [0.6,4.6].
It follows from Eq. (2), that in order to calculate the

information-theoretic quantities, the full form of the distribu-
tion f (r |θ) must be known, while the empirical model de-
scribes only the mean value, Eq. (16), and the standard de-
viation, Eq. (17). To proceed on, we select the gamma dis-
tribution as a suitable model for probabilistic description of
neuronal firing rates given stimulus intensity (Ikeda and Man-
ton, 2009; Pawlas et al., 2008),

f (r |θ) = rk (θ)−1 exp(−r/s(θ))
Γ[k (θ)]s(θ)k (θ)

, (18)

where Γ(x) is the gamma function, the shape, k (θ), and scale,
s(θ), parameters are related to m(θ) and σ(θ) as

k (θ) =
r2(θ)
σ2(θ)

(19)

s(θ) =
σ2(θ)
m(θ)

. (20)

Eqns. (19) and (20) follow from the basic relationship be-
tween the scale/shape parameters and the mean/variance of the
gamma distribution (Johnson, Kotz, and Balakrishnan, 1994).
The S-R relationship is shown in Fig. 1a.

For the purpose of this paper we assume that the metabolic
cost of neuronal signalling is proportional to the firing rate,
as supported by both theoretical (e.g., Balasubramanian and
Berry (2002)) and experimental studies (e.g., Attwell and
Laughlin (2001)). In other words we have v(r) = κr , where
the constant of proportionality, κ = 7.1 × 108 ATP molecules,
describes the metabolic cost of a single action potential (At-
twell and Laughlin, 2001). Eq. (11) is thus reduced to

w(θ) = κm(θ). (21)

We also consider a group n independent neurons, each fol-
lowing the S-R model described by Eq. (18). We assume that
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a. Empirical stimulus-response model
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Figure 1. Stimulus-response characteristics. Empirical model was fitted by Lansky, Pokora, and Rospars (2008). Mean stimulus-response
curve (solid) and standard deviation (dashed) is indicated. The probability distribution of responses given each stimulus is assumed to follow
the gamma distribution, its values are indicated by shades of gray (a.). Analogous stimulus-response characteristics for a group of n = 20
neurons is shown in b.

at any time instant all neurons are subject to the same stim-
ulus value, θ, and the response, r , of the population is the
sum of individual responses (firing rates). Such setup results
in a relative decrease of the amount of noise in the popula-
tion response with increasing size of the population, since the
mean response of the population is nm(θ) while its standard
deviation

√
nσ(θ), where m(θ) and σ(θ) are described by

Eqns. (16) and (17). We examine in detail the case of n = 20
neurons. The S-R curve and its standard deviation are shown
in Fig. 1b, suggesting that the low-noise approximation might
be applicable. The metabolic cost associated with stimulus θ
is nw(θ). The full model of the population response, given
by p.d.f. f (r |θ), can be easily constructed since the sum of n
independent and identically gamma-distributed random vari-
ables with shape parameter k and scale parameter s is again
a gamma-distributed random variable with the same scale pa-
rameter and shape parameter equal to nk (Johnson, Kotz, and
Balakrishnan, 1994).

3. RESULTS AND DISCUSSION

The theoretical methods described in the previous section
are now applied in this section on the empirical neuronal
model described by Eqns. (16)–(20).

3.1. Single neuron

Fig. 2a compares the optimal input distributions for achiev-
ing the capacity, C, and capacity per unit cost, C∗. Suffi-
ciently dense input grid has been used, k = 300, to ensure
high precision. The results confirm the discrete character of
the optimal input distribution being supported only at 5 points
with non-zero probability. The distributions differ in the exact
stimulus intensity values of non-zero probability (except for

θmin and θmax which are stable, although Pr {θmax} � 0.001
for the C∗-achieving input distribution). During the numer-
ical calculations we observed, that near-capacity (and near-
capacity per unit cost) can be achieved by a set of differ-
ent distributions, and that the convergence towards the exact
(stable) solution can be relatively slow (confirming observa-
tions of Abou-Faycal, Trott, and Shamai (2001) and related
theoretical considerations found in Wu and Verdu (2010)).
Simultaneously, the low-noise approximation (Fig. 2b) does
not resemble the exact input distribution, confirmed by the
approximate capacity value, Clow = 0.88 bits. It is worth
noting, that employing uniform input distribution results in
I (Θ; R) = 1.25 bits, substantially higher than Clow. Obvi-
ously, the studied empirical S-R relationship does not fall
within the low-noise category. In Fig. 3 the ratio C(W )/W ,
is shown for both exact (numerical) and approximate methods
and the optimal cost, W ∗ = 0.42 × 1010, is indicated. The
value of C(W ∗) = 0.83 bits offers the best balance between
the ultimate limit on reliable information transfer, versus the
induced metabolic cost of neuronal activity.

3.2. A small group of independent neurons

The standard deviation (compared to the mean response)
is not negligible for the empirical S-R model considered, see
Fig. 1a, thus we are obviously straining the low-noise approx-
imation beyond its range of validity. A natural way to reduce
the amount of “noise” is to consider the summed response of a
group of independent neurons. Fig. 4 shows the information-
optimality conditions. The capacity is C = 3.12 bits, first
achieved at W † = 23.12 × 1010 ATP molecs/s, capacity at op-
timal cost is C(W ∗) = 1.81 bits, with W ∗ = 6.67 × 1010 ATP
molecs/s. The optimal balance thus states that by operating
at the 29 % of the required metabolic cost to achieve capac-
ity it is possible to achieve 58 % of the capacity. The low-
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Figure 2. Optimal input distributions achieving the capacity, C, and
capacity per unit cost, C∗ for the empirical stimulus-response model
from Fig. 1a. The exact optimal input distributions achieving C resp.
C∗ are shown in a), the low-noise approximation in b). The exact
optimal input distributions are both discrete with 5 points of support.
The continuous-valued low-noise p.d.f. approximation does not de-
scribe the exact solution well.

noise approximation to the capacity-cost function becomes
more precise (Fig. 4c, compare with Fig. 3) with Clow =

2.97 bits, while the approximation to the capacity at optimal
cost, C(W ∗), is underestimated and the optimal cost overes-
timated. Fig. 4b resp. 4d compares the exact and low-noise
approximation to the optimal input probability distributions.
We compare the cumulative distribution functions in order to
better visualize the degree of correspondence between the ap-
proximate and exact result. Although the exact input distri-
butions are discrete and the approximate ones are continuous,
we observe an increase in their “similarity” when compared
to the single-neuron case (Fig. 2).

The employed numerical algorithm allows to control the
precision of the result, therefore it is possible to compare input
distributions that near-achieve capacity. For an input distribu-
tion resulting in mutual information I = I (Θ; R) we define the
relative precision as 1− I/C. Fig. 5 shows three different input
distributions which achieve the capacity within 1 % precision
(cf. Fig. 4b). The differences among the distributions are ap-
parent in the number of points of support, in stimulus inten-
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Figure 3. Ratio of the capacity-cost function to the metabolic cost
of neuronal activity for the empirical S-R model from Fig. 1a. The
optimal balance between information capacity and metabolic cost,
C∗ , is given by the maximum of the C(W )/W ratio, which occurs
at the optimal average metabolic cost W ∗ = 0.42 × 1010, yielding
C(W ∗) = 0.83 bits. Low-noise approximation is shown for compar-
ison, but performs poorly, since the selected model does not have
sufficiently small response variability.

sities with non-zero probabilities, and the assigned probabil-
ities. We conclude, that even for S-R relationships with very
low response variability, the exact form of capacity-achieving
input distribution is of limited importance.

3.3. Arbitrary number of neurons

The dependence of the capacity on the number of neurons,
n, in the population is shown in Fig. 6 together with its low-
noise approximation. Although the low-noise approximation
curve almost passes through the exact solutions, its values for
each n are slightly shifted. The increase of both C and Clow is
approximately logarithmic with n, especially for large n. The
relative error of the approximation, 1 − Clow/C, starts at 37 %
for n = 1 and decreases fast to 5 % at n = 22, continuing
in a slow decrease to 1 % at n = 274. We conclude, that the
low-noise approximation is valid for models with indeed low
signal-to-noise ratio (cf. Fig. 1b), similar conclusions can be
drawn from examples shown in Kostal (2010).

Capacity per unit cost and the optimal cost in dependence
on the population size are shown in Fig. 7. The value of C∗ de-
creases with n, Fig. 7a. From this point of view, single-neuron
case is the most efficient one (although such a conclusion de-
pends on the model and especially on the definition of the
metabolic cost). Also note that the capacity generally tends
to infinity with growing number of neurons. The low-noise
approximation performs worse in determining C∗ than in de-
termining C. Fig. 7b shows the optimal cost normalized per
neuron, W ∗/n, since the plot of W ∗ vs. n would be dominated
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Figure 4. Information-optimality conditions for the homogeneous population of 20 neurons. Each neuron follows the empirical stimulus-
response model from Fig. 1a. The low-noise approximation to the capacity-cost function (a.) performs better than in the single-neuron case
(i.e., compare Fig. 3 with panel c. here). The comparison between exact and approximate optimal input distributions achieving C resp. C∗

are shown in panels b resp. d by employing the cumulative distribution functions. Although the exact input distributions are discrete (with 20
(b.) resp. 17 (d.) points of support) while the approximate ones are continuous, we observe a similarity in the overall shapes of cumulative
distributions. Even better correspondence can be achieved by considering a larger population (see Fig. 10).

by the linear contribution of n. We see, that the average opti-
mal cost per neuron also decreases with increasing n, the low-
noise approximation overestimates the true values. Fig. 7c
shows the increase of the capacity at optimal cost, C(W ∗),
with increasing population size (the capacity, C, is added for
comparison).

The ratio C(W ∗)/C � 0.6 is almost independent on n for
the population sizes examined (n = 1, . . . ,300), while the ra-
tio of optimal cost, W ∗, to the capacity-achieving cost, W †,
decreases from 0.37 for a single neuron, to 0.25 for n = 300
(see Fig. 8a where n increases along the curve from right to
left). The ratio C(W ∗)/C shows a minimum around medium-
sized populations (n = 20, . . . ,70), however, the effect is
small. The capacity and capacity at unit cost per neuron are
monotonicaly decreasing in Fig. 8b. If these ratios are taken
as indicators of optimal population size then it implies that the
most efficient scenario is the single neuron case. Adding other

neurons increases the capacity (Fig. 7c) but not sufficiently
fast. The same conclusion can be reached for the capacity per
unit cost per neuron, since C∗ is already decreasing with n
(Fig. 7a).

The variability of the low-noise approximation of optimal
input distributions, for both capacity and capacity per unit
cost, are shown in Fig. 9 for selected sizes of neuronal pop-
ulation. While the approximations to the capacity-achieving
input p.d.f. are almost independent of the population size, the
capacity per unit cost-achieving p.d.f. approximations depend
on n more substantially.

Finally, we “imitate” the conditions required for the deriva-
tion of Eq. (15), namely the assumption that p(θ) is nonzero
over the stimulus range. Thus we reduce the size, k, of the in-
put grid in the numerical procedure while maintaining a very
low response variability (n = 274 neurons). The goal here is
to investigate the correspondence between exact and approxi-
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The choice of different input distributions which near-achieve capac-
ity within a given precision increases with the signal-to-noise ratio
(the number of neurons in the population).

mate optimal input distributions, since we expect that most of
the stimulus intensities in the undersampled grid will be as-
signed non-zero probabilities. This procedure requires a bit
of fine-tuning, though, since too severe undersampling would
result in nearly uniform probabilities. The results are shown
in Fig. 10 for a sufficiently high signal-to-noise ratio scenario
(population size n = 274) and the input grid containing 50
and 70 equidistant points. The numerically obtained values
of probabilities at the undersampled grid points, Pr {θi }, were
used to calculate “histogram” for easier comparison with the
low-noise input p.d.f. approximation. (The histogram val-
ues were calculated as H (θi ) = Pr {θi } /∆ for i = 1, . . . , k,
where ∆ is the distance between grid points.) The low-noise
approximation matches the undersampled capacity-achieving
input distribution, with mild underestimation at the end points
(Fig. 10a). It is worth noting, that the absolute difference be-
tween the true capacity and “undersampled” capacity is only
0.02 bits, which further illustrates the wide choice of near-
capacity achieving input distributions in the high signal-to-
noise ratio situation. The underestimation of the small stim-
ulus intensity probabilities is more apparent for the capacity
per unit cost calculations (Fig. 10b), but overall the agreement
between the continuous p.d.f. and the undersampled approxi-
mation is good.
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Figure 6. Comparison of exact and approximate capacity results.
Both the capacity and its approximation grow approximately loga-
rithmically with increasing number of neurons (a). The relative error
(b) of the approximation starts at 37 % for a single neuron and drops
fast to less than 5 % for 22 neurons (cf. Fig. 1b and 4). The relative
error then decreases slowly, being less than 1 % for a group of 274
neurons.

3.4. Non-regular Fisher information example

In this section we construct a simple S-R relationship
to demonstrate a “counter-intuitive” behavior of the low-
noise approximation, for an apparently (mathematically) well-
behaving mixture model. Analogous models are common
when describing, e.g., neuronal coding of odorant mixtures
(Rospars et al., 2008) or the spiking activity of bursting neu-
rons (Bhumbra, Inyushkin, and Dyball, 2004; DeBusk et al.,
1997; Tuckwell, 1988), with one distribution responsible for
the “slow” firing and the other for the “fast” firing regime.
In our model we do not aim for a realistic neuronal descrip-
tion, thus we choose a mixture of two Gaussians for conve-
nience (the response in Eq. (22) is thus not the firing rate). It
is possible to construct more realistic variant of Eq. (22) at the
expense of cumbersome notation, but with no impact on our
main conclusion.

Consider the stimulus intensity range 0 ≤ θ ≤ 1 (in arbi-
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Figure 7. Comparison of exact and approximate capacity per unit cost in dependence on population size. The maximum information per unit
cost, C∗ , decreases with the size of neuronal population (a), making the single-neuron case most “efficient”. The low-noise approximation
is less precise than in the case of capacity (Fig. 6). The optimal metabolic cost W ∗ is plotted normalized per neuron (b) to show its relative
decrease with population size, otherwise its dependence on n would be almost linear. The low-noise approximation severely overestimates
W ∗/n. The capacity at optimal cost, C(W ∗), is shown together with C in (c).

trary units) and the following S-R relationship

f (r |θ) = (1 − θ2)g(r − θ2;σ1) + θ2g(r − θ2;σ2), (22)

where g(r;σ) is the probability density of a Gaussian distri-
bution with zero mean and variance σ2,

g(r;σ) =
1√

2πσ2
exp

(
− r2

2σ2

)
. (23)

The model in Eq. (22) describes a smooth change of the re-
sponse variability distribution from one Gaussian to the other
with increasing stimulation, along the mean S-R curve r (θ) =

θ2.
Fisher information defined by Eq. (7) cannot be found in a

closed form for the model in Eq. (22). It is, however, possible
to evaluate J (θ |R) at the extremal points of the stimulus range
by noting that f (r |θ) is differentiable, thus we can interchange
the limits θ → 0 and θ → 1 with integration in Eq. (7). After
some algebraic manipulation, and by employing the substitu-
tion r ← (r − 1) we obtain (the prime denotes derivative with
respect to r)

J (0|R) =0, (24)

J (1|R) =

∫
R

{
4

[g′(r;σ2)]2

g(r;σ2)
+ 4g(r;σ2) − 8g(r;σ1)−

− 8g′(r;σ2) + 8
g′(r;σ2)g(r;σ1)

g(r;σ2)
+ 4

g(r;σ1)
g(r;σ2)

}
dr.

(25)

By employing that
∫
R g(r;σ) = 1,

∫
R g′(r;σ) = 0 and the

Gaussian character of g(r;σ), the Eq. (25) can be further sim-
plified to yield

J (1|R) =
4
σ2

2

− 4 + 4

∞∫
−∞

σ2

σ2
1

√
2π

exp
[( 1

2σ2
2

− 1
σ2

1

)
r2
]

dr.

(26)

The integral in Eq. (26) is divergent for σ1 ≥
√

2σ2, other-

wise it equals σ2
2/(σ1

√
2σ2

2 − σ2
1). Since f (r |θ) is contin-

uously differentiable in θ we conclude, that for σ1 ≥
√

2σ2
the J (θ |R) is a continuous function of θ, starting from zero at
θ = 0 and approaching infinity as θ → 0. We stress at this
point, that f (r |θ) in Eq. (22) satisfies the assumptions which
are usually mentioned in applications (Kay, 1993), i.e., con-
tinuous differentiability in θ, the independence of the support
on θ and automatic existence of the unbiased estimator. Zero
or divergent values of Fisher information, however, cannot be
ignored. One might be tempted to conclude, based on Eq. (6),
that stimuli intensities near θ = 0 cannot be estimated at all
(infinite mean squared error), while intensities near θ = 1 can
be estimated with arbitrarily high precision. In fact, differ-
ent assumptions are broken in this case, preventing us to ap-
ply the Cramer-Rao bound, and correspondingly the low-noise
approximation.

First, zero value of Fisher information is generally inter-
preted as that there is no unbiased estimator for the problem
in question (Pitman, 1979), therefore Cramer-Rao bound in
the form of Eq. (6) does not apply. The variant of Cramer-
Rao inequality for biased estimators can be used (Brunel and
Nadal, 1998), however, the problem is that the dependence of
bias on θ is usually not known beforehand.

Second, the condition J (1|R) = ∞ lower-bounds the mean
square error of the estimator by zero (provided that the un-
biased estimator exists), making the Cramer-Rao clearly not
achievable. Thus, one may view the Cramer-Rao bound as
a trivial inequality (mean square error is greater than zero).
However, it turns out that the model from Eq. (22) does not
satisfy additional requirements for the Cramer-Rao bound to
be applicable. As follows from the logic of the proof of the
Cramer-Rao inequality (Pitman, 1979, Chapter 5), the bound
can hold only if both the density f (r |θ) and the estimator θ̂(r)
satisfy certain conditions. Since the form of the estimator
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Figure 8. Ratios of capacity and cost values at information-optimal
conditions. The ratio of capacity at optimal cost to capacity vs. the
ratio of optimal to capacity-achieving metabolic cost is shown in a.
The neuronal population size increases along the curve from the right
to the left. Note that while the ratio W ∗/W† decreases with increas-
ing n, the ratio of capacities stays relatively the same, around 0.6,
with mild minimum for medium-sized populations (n = 20, . . . ,70).
The values of C(W ∗) and C per neuron can be taken as indicators of
optimal population size for these quantities. The most “efficient” is
thus the single-neuronal case.

is usually not known beforehand, f (r |θ) must satisfy addi-
tional constraints (Pitman, 1979). It follows, that for some
θ0, the function [ f ′(r |θ)]2/ f (r |θ0) (the prime denotes deriva-
tive with respect to θ) must be bounded and integrable (in r),
at least in the infinitesimal neighborhood of θ0 and also at
θ = θ0. The density model in Eq. (22) does not meet these
conditions. We note, that it is stated also in Brunel and Nadal
(1998), that in cases where Fisher information diverges the
low-noise approximation is not applicable.

To show exactly what are the differences between the true
(numerical) and the approximate (invalid) capacity calcula-
tion, we present the results of the low-noise approximation
application in Fig. 11, for a sufficiently high signal to noise
ratio (Fig. 11a), σ1 = 0.02, σ2 = 0.01. The exact capacity-
achieving input distribution is discrete, shown in Fig. 11b, and
C = 4.31 bits. The undersampled capacity-achieving solution
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Figure 9. Low-noise approximations of capacity and capacity per
unit cost achieving input densities. The capacity-achieving p.d.f. ap-
proximation shows only minimal dependence on the population size,
shapes for n > 50 are visually not distinguishable (a). The capac-
ity per unit cost-achieving p.d.f. approximations depend on n more
significantly (b), since the relative optimal cost per neuron decreases
with increasing n (see also Fig. 7b).

(mutual information equal to 4.30 bits), analogous to Fig. 10,
is shown in Fig. 11c. In order to numerically evaluate the
low-noise input density approximation from Eq. (15), the in-
tegration of

√
J (θ |R) had to be stopped at θ = 1 − 10−5. The

value of Clow in Eq. (10) then varied between 3.6 to 4.04 bits,
depending on the method employed (simple trapezoidal or
adaptive (R Development Core Team, 2008)). The correspon-
dence between the undersampled numerical solution and the
low-noise approximation is quite poor, especially near the ex-
tremal points of the stimulus range (as expected).

4. CONCLUSIONS

In this paper we calculated the information capacities, ca-
pacities per unit cost and their respective optimizing input dis-
tributions, for an empirical model of neuron and a group of
neurons. We identified regions of validity and precision of
the low-noise approximation with respect to exact numerical
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Figure 10. Comparison of low-noise approximations to optimal input
densities with undersampled numerical solutions. The population of
274 neurons corresponds to a scenario with very high signal-to-noise
ratio. The input grid size was reduced to 50 and 70 points to ob-
tain non-zero probabilities over the whole grid in order to imitate the
assumption of the low-noise input p.d.f. approximation in Eq. (15).
The agreement between the low-noise approximation and undersam-
pled input grid calculations is very good, with mild discrepancy for
small and high stimulus intensities. The underestimation of numer-
ically obtained probabilities is more apparent in the comparison be-
tween capacity per unit cost-achieving input distributions.

solutions. We found out, that the low-noise approximation re-
quires relatively high signal-to-noise ratio scenario in order
to give relevant results, and that the approximation performs
less favorably when the capacity per unit cost is to be deter-
mined. This conclusion should be taken into account when-
ever the approximation is applied. We demonstrated, by em-
ploying numerical optimization procedures, that the capacity
can be near-achieved by a variety of different input distribu-
tions. From this point of view, the numerical value of capacity
is more “relevant” than the exactly determined optimal proba-
bility distribution. We also demonstrated on an innocuously
looking S-R relationship, that the low-noise approximation
may not be valid and provided reasons why it is so.

Finally we note, that we are convinced that the values of
capacities are useful in the context of neuronal systems, since

they provide an upper bound on information about stimulus
intensities that can be transferred reliably, by whatever means
available. How, and whether at all, the real neurons approach
these limits represents an open problem which is beyond the
scope of this paper.
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Appendix A: Numerical methods

In this paper we employ the cutting-plane algorithm (Huang
and Meyn, 2005; Kelley, 1960), which is applicable un-
der more general circumstances than the Blahut-Arimoto
algorithm (e.g., continuously varying input and/or output,
metabolic constraints), and also allows to control the numer-
ical precision of the result. The principle of the cutting-
plane algorithm is the representation of a non-linear optimiza-
tion problem as a sequence of converging linear programming
problems.

Assume, that F is a set of all input stimulus distributions
defined over finite stimulus range, [θmin, θmax]. Additionally,
it is required that f (r |θ) is sufficiently well behaved, see
Huang and Meyn (2005) for not too restrictive assumptions.
The channel sensitivity function gp (θ), given the input p.d.f.
p(θ), is defined as the Kullback-Leibler distance

gp (θ) =

∫
R

f (r |θ) ln
f (r |θ)
f (r)

dr, (A1)

thus Eq. (2) can be expressed as

I (Θ; R) =

∫
Θ

gp (θ)p(θ) dθ. (A2)

It follows that for some selected Θ0 ∼ p0(θ) ∈ F holds

I (Θ0; R) = min
p(θ)∈F

∫
Θ

gp (θ)p0(θ) dθ, (A3)

since∫
Θ

gp (θ)p0(θ) dθ =

=

∫
Θ

∫
R

p0(θ) f (r |θ) ln
[

f (r |θ)
f (r)

f0(r)
f0(r)

]
dr dθ =

= I (Θ0; R) +

∫
R

ln
f0(r)
f (r)

∫
Θ

p0(θ) f (r |θ) dθ dr. (A4)

where f0(r) =
∫
Θ

f (r |θ)p0(θ) dθ. The last term in Eq. (A4) is
≥ 0, since it can be written in the form of a Kullback-Leibler
distance, which is known to be non-negative, and equal to zero
only if p(θ) = p0(θ). The minimum is unique, and therefore
it holds for p(θ):

∫
Θ
gp (θ)p0(θ) dθ ≥ I (Θ,R).
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Figure 11. Stimulus-response model with non-regular Fisher information, in the regime of small response variability. The mean stimulus-
response curve together with standard deviation is shown (a), the model follows Eq. (22) for σ1 = 0.02 and σ2 = 0.01. The capacity-
achieving input distribution is discrete (b) with C = 4.31 bits. The correspondence between the undersampled numerical solution and the
low-noise approximation is quite poor (c). The low-noise approximation is not valid, since the model does not meet additional Cramer-Rao
regularity conditions (as explained in the main text).

The main idea behind expressing I (Θ0; R) in Eq. (A3) as a
minimization over a set of input distributions instead of cal-
culating it directly is, that the minimization is linear in p0(θ),
i.e., Eq. (A3) can be written by using the inner (scalar) product
〈·, ·〉 as

I (Θ0; R) = min
p(θ)∈F

〈
gp (θ),p0(θ)

〉
. (A5)

The general problem of finding capacity in Eq. (3) is
solved as follows. The algorithm is initialized with an
arbitrary distribution p0(θ) ∈ F . In the n-th iteration
of the algorithm we have a set of n input distributions,
{p0(θ),p1(θ), . . . ,pn−1(θ)} ⊂ F , and by employing Eq. (A5)
we have

In (Θ; R) = min
0≤i≤n−1

〈p(θ),gi (θ)〉 , (A6)

where gi (θ) is the sensitivity function given pi (θ), gi ≡ gpi .
The next input distribution, pn (θ), is obtained as a solution to
the problem

pn (θ) = arg max
p(θ)
{In (Θ; R) : p(θ) ∈ F }. (A7)

The optimization in Eq. (A7) can be expressed as a linear pro-
gramming problem

maximize c
subject to 〈p(θ),gi (θ)〉 ≥ c for i = 0, . . . n − 1,

p(θ) ∈ F .
(A8)

The standard k-dimensional maximization linear program-
ming problem in variables xT = (x1, x2, . . . , xk ), is formulated
as

maximize dTx
subject to Ax ≤ b

x ≥ 0,
(A9)

where A is an m × k matrix of m linear constraints.
In the following we adapt the scheme in Eq. (A9) to the

problem in Eq. (A8). First, we select k points of support
of the input distribution, {θ1, θ2, . . . , θk }, in the allowed in-
terval. These points are fixed during the course of the algo-
rithm. We optimize with respect to the probabilities of these
points, Pr {θi }, so that the allowed input distributions can be
expressed as

p(θ) =

k∑
i=1

Pr {θi } δ(θ − θi ), (A10)

where δ(·) is the Dirac delta function. Let the probability of
θi in the j-th distribution, pj (θ), be denoted as pi, j , thus

pj (θ) =

k∑
i=1

pi, jδ(θ − θi ). (A11)

The probabilities of the points of support of the variable dis-
tribution p(θ) will be simply denoted as p1, . . . ,pk . We form
(k + 1)-dimensional vectors x and d as

xT = (c,p1,p2, . . . ,pk ), (A12)

dT = (1,0,0, . . . ,0), (A13)

so that dTx = c. The required condition x ≥ 0 is thus not in
contradiction with Eq. (A12).

Next, we express the matrix A. We write the normalization
condition

∑
i pi, j = 1 by employing the 1 × (k + 1) matrix A1

as

A1 = (0,1,1, . . . ,1), (A14)
A1x = 1, (A15)
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or equivalently by respecting the inequality condition in
Eq. (A9) as

A1x ≤ 1, (A16)
−A1x ≤ −1. (A17)

In order to calculate C(W ) by means of the cutting-plane
algorithm developed above, it suffices to introduce one more
linear constraint,

AW = (0,w(θ1),w(θ2), . . . ,w(θk )), (A18)
AW x ≤ W. (A19)

Next, we re-formulate the n conditions in the n-th iteration
of the algorithm, 〈p(θ),gi (θ)〉 ≥ c for i = 0,1, . . . ,n − 1.
Rewriting the condition as c − 〈p(θ),gi (θ)〉 ≤ 0 yields

Gi = (1,−gi (θ1),−gi (θ2), . . . ,−gi (θk )), (A20)
Gix ≤ 0, (A21)

where

gi (θ j ) =

∫
R

f (r |θ j ) ln
f (r |θ j )∑k

`=1 p`, i f (r |θ`)
dr. (A22)

The complete algorithm at n-th iteration can be summarized
as follows.

1. Initialization (n = 0). Select {θ1, . . . , θk } and pj,0 =

Pr
{
θ j

}
, for j = 1 . . . k.

2. Iteration (n ≥ 1). Form the (3 + n) × k matrix A and
vector b,

A =



A1
−A1
AW

G0
...

Gn−1


, b =



1
−1
W
0
...
0


. (A23)

Solve the linear programming problem in Eq. (A9), use
the solution {p∗1 , . . . ,p∗k } as the n-th distribution for the
next iteration, pj,n = p∗j . Use the obtained value of c

as the upper bound, and the value of
〈
p(θ),gp (θ)

〉
as

the lower bound to check the convergence, in particu-
lar (Huang and Meyn, 2005),

c0 > c1 > · · · > cn → C upper bound, (A24)
〈 gn ,pn〉 → C lower bound, (A25)

pi,n → p∗i p∗ (θ). (A26)

The relative precision of the solution was defined as (c −〈
p(θ),gp (θ)

〉
)/c.

An extension of the algorithm (A8), that iteratively con-
structs the optimal input alphabet, has also been proposed
(Huang and Meyn, 2005). For the case of capacity, we start
with a 2-point grid at θmin and θmax and find the “capacity” for

this undersampled grid. For the next cycle, a new grid point is
placed at the such θ, for which the sensitivity function gn (θ)
attains maximum. In this way, it is possible to “build” an op-
timized input grid. Unfortunately, as the number of cycles
increases, some already placed grid points are no longer as-
signed non-zero probabilities and can be removed. We found
limited use for the grid-optimization procedure in the high
signal-to-noise ratio, where, however, the exact positions of
θi had very small impact (as discussed in the paper). Also
note, that while maximization of mutual information is con-
cave in the input probabilities, it is generally neither convex
nor concave in the positions of grid points θi .
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