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Measures of statistical dispersion based on Shannon and Fisher information concepts

Lubomir Kostal,∗ Petr Lansky, and Ondrej Pokora
Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic

We propose and discuss two information-based measures of statistical dispersion of positive continuous ran-
dom variables: the entropy-based dispersion and Fisher information-based dispersion. Although standard devi-
ation is the most frequently employed dispersion measure, we show, that it is not well suited to quantify some
aspects that are often expected intuitively, such as the degree of randomness. The proposed dispersion measures
are not entirely independent, though each describes the quality of probability distribution from a different point
of view. We discuss relationships between the measures, describe their extremal values and illustrate their prop-
erties on the Pareto, the lognormal and the lognormal mixture distributions. Application possibilities are also
mentioned.
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1. INTRODUCTION

In recent years, information-based measures of randomness
(or “regularity”) of signals have gained popularity in various
branches of science [1–4]. In this paper we construct mea-
sures of statistical dispersion based on Shannon and Fisher
information concepts and we describe their properties and
mutual relationships. The effort was initiated in [5], where
the entropy-based dispersion was employed to quantify cer-
tain aspects of neuronal timing precision. Here we extend the
previous effort by taking into account the concept of Fisher
information (FI), which was employed in different contexts
[2, 6–9]. In particular, FI about the location parameter has
been employed in the analysis of EEG [8, 10], of the atomic
shell structure [11] (together with Shannon entropy) or in the
description of variations among the two-electron correlated
wavefunctions [12].

The goal of this paper is to propose different dispersion
measures and to justify their usefulness. Although the stan-
dard deviation is used ubiquitously for characterization of
variability, it is not well suited to quantify certain “intuitively
intelligible” properties of the underlying probability distribu-
tion. For example highly variable data might not be random at
all if it only consists of “very small” and “very large” values.
Although the probability density function (or histogram of
data) provides a complete view, one needs quantitative meth-
ods in order to make a comparison between different experi-
mental scenarios.

The methodology investigated here does not adhere to any
specific field of applications. We believe, that the general re-
sults are of interest to a wide group of researchers who deal
with positive continuous random variables, in theory or in ex-
periments.
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2. MEASURES OF DISPERSION

2.1. Generic case: standard deviation

We consider a continuous positive random variable (r.v.) T
with a probability density function (p.d.f.) f (t) and finite first
two moments. Generally, statistical dispersion is a measure
of “variability” or “spread” of the distribution of r.v. T , and
such a measure has the same physical units as T . There are
different dispersion measures described in the literature and
employed in different contexts, e.g., standard deviation, inter-
quartile range, mean difference or the LV coefficient [13–16].

By far, the most common measure of dispersion is the stan-
dard deviation, σ, defined as

σ =

√
E

(
[T − E (T ) ]2) . (1)

The corresponding relative dispersion measure is obtained by
dividing σ with E (T ) . The resulting quantity is denoted as
the coefficient of variation, CV ,

CV =
σ

E (T )
. (2)

The main advantage of CV over σ is, that CV is dimensionless
and thus probability distributions with different means can be
compared meaningfully.

From Eq. (1) follows, that σ (or CV ) essentially measures
how off-centered (with respect to E(T )) is the distribution of
T . Furthermore, since the difference (T −E (T ) ) is squared in
Eq. (1), it follows that σ is sensitive to outlying values [15].
On the other hand, σ does not quantify how random, or un-
predictable, are the outcomes of r.v. T . Namely, high value of
σ (high variability) does not indicate that the possible values
of T are distributed evenly [5].

2.2. Dispersion measure based on Shannon entropy

For continuous r.v.’s the association between entropy and
randomness is less straightforward than for discrete r.v.’s. The
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(differential) entropy h(T ) of r.v. T is defined as [17]

h(T ) = −

∫ ∞
0

f (t) ln f (t) dt. (3)

The value of h(T ) may be positive or negative, therefore h(T )
is not directly usable as a measure of statistical dispersion [5].
In order to obtain a properly behaving quantity, the entropy-
based dispersion, σh , is defined as

σh = exp[h(T )]. (4)

The interpretation of σh relies on the asymptotic equiparti-
tion property theorem [17]. Informally, the theorem states that
almost any sequence of n realizations of the random variable
T comes from a rather small subset (the typical set) in the n-
dimensional space of all possible values. The volume of this
subset is approximately σn

h
= exp[nh(T )], and the volume is

bigger for those random variables, which generate more di-
verse (or unpredictable) realizations. Further connection be-
tween σh and σ follows from the analogue to the entropy
power concept [17]: σh/e is equal to the standard deviation
of an exponential distribution with entropy equal to h(T ).

Analogously to Eq. (2), we define the relative entropy-
based dispersion coefficient, Ch , as

Ch =
σh

E (T )
. (5)

The values of σh and Ch quantify how “evenly” is the prob-
ability distributed over the entire support. From this point of
view, σh is more appropriate than σ when discussing random-
ness of data generated by r.v. T .

2.3. Dispersion measure based on Fisher information

The FI plays a key role in the theory of statistical estimation
of continuously varying parameters [18]. Let X ∼ p(x; θ) be
a family of r.v.’s defined for all values of parameter θ ∈ Θ,
where Θ is an open subset of the real line. Let θ̂(X ) be an
unbiased estimator of parameter θ, i.e., E

(
θ̂(X ) − θ

)
= 0.

If for all θ ∈ Θ and both ϕ(x) ≡ 1 and ϕ(x) ≡ θ̂(x) the
following equation is satisfied ([19, p.169] or [18, p.31]),

∂

∂θ

∫
X

ϕ(x)p(x; θ) dx =

∫
X

ϕ(x)
∂p(x; θ)
∂θ

dx, (6)

then the variance of the estimator θ̂(X ) satisfies the Cramer-
Rao bound,

Var(θ̂(X )) ≥
1

J (θ |X )
, (7)

where

J (θ |X ) =

∫
X

[
∂ ln p(x; θ)

∂θ

]2

p(x; θ) dx, (8)

is the FI about parameter θ contained in a single observation
of r.v. X .

Exact conditions (the regularity conditions) under which
Eq. (7) holds are stated slightly differently by different au-
thors. In particular, it is sometimes required that the set
{x : p(x; θ) > 0} does not depend on θ, which is an unnec-
essarily strict assumption [18]. For any given p.d.f. f (t) one
may conveniently “generate” a simple parametric family by
introducing a location parameter. The appropriate regularity
conditions for this case are stated below.

The family of location parameter densities p(x; θ) satisfies

p(x; θ) = p0(x − θ), (9)

where we consider Θ to be the whole real line and p0(x) is
the p.d.f. of the “generating” r.v. X0. Let the location family
p(x; θ) be generated by the r.v. T ∼ f (t), thus p(x; θ) =

f (x − θ) and Eq. (8) can be written as

J (θ |X ) =

∞∫
θ

[
∂ ln f (x − θ)

∂θ

]2

f (x − θ) dx =

=

∞∫
0

[
∂ ln f (t)

∂t

]2

f (t) dt ≡ J (T ),

(10)

where the last equality follows from the fact that the deriva-
tives of f (x − θ) with respect to θ or x are equal up to a sign
and due to the location-invariance of the integral (thus justi-
fying the notation as J (T )). Since the value of J (T ) depends
only on the “shape” of the p.d.f. f (t), it is sometimes denoted
as the FI about the random variable T [17].

To interpret J (T ) according to the Cramer-Rao bound in
Eq. (7), the required regularity conditions on f (t) are: f (t)
must be continuously differentiable for all t > 0 and f (0) =

f ′(0) = 0. The integral (10) may exist and be finite even if
f (t) does not satisfy these conditions, e.g., if f (t) is differ-
entiable almost everywhere or f (0) , 0. However, in such a
case the value of J (T ) does not provide any information about
the efficiency of the location parameter estimation [18].

The units of J (T ) correspond to the inverse of the squared
units of T , therefore we propose the FI based dispersion mea-
sure, σJ , as

σJ =
1

√
J (T )

. (11)

Heuristically, σJ quantifies the change in the p.d.f. f (t) sub-
ject to an infinitesimally small shift δθ in t, i.e, it quantifies the
difference between f (t) and f (t− δθ). Any peak, or generally
“non-smoothness” in the shape of f (t) decreases σJ . Analo-
gously to Eqns. (2) and (5) we define the relative dispersion
coefficient CJ as

CJ =
σJ

E (T )
. (12)

In this paper we do not introduce different symbols for CJ in
dependence on whether the Cramer-Rao bound holds or not.
We evaluate CJ whenever the integral in Eq. (10) exists and
we comment on the regularity conditions in the text.
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3. RESULTS

3.1. Extrema of variability

Generally, the value CV can be any non-negative real num-
ber, 0 ≤ CV < ∞. The lower bound, CV → 0, is approached
by a p.d.f. highly peaked at the mean value, in the limit cor-
responding to the Dirac’s delta function, f (t) = δ(t − E (T ) ).
There is, however, no unique upper bound distribution for
which CV → ∞. For example, the p.d.f. examples analyzed
in the next section allow arbitrarily high values of CV and yet
their shapes are different.

3.2. Extrema of entropy and its relation to variability

The relation between CV and entropy was investigated in
a series of papers [5, 20, 21]. The results can be re-stated
in terms of Ch as follows. From the definition of Ch by
Eq. (5) and from the properties of entropy [17] follows, that
0 < Ch < e. The lower bound, Ch → 0, is not realized by
any unique distribution. Highly-peaked (possibly multimodal)
densities approach the bound and in the limit any discrete-
valued distribution achieves it. From this fact follows, that
the relationship between CV and Ch is not unique, small CV

implies small Ch but not vice versa.
The maximum value of Ch is connected with the problem

of maximum entropy (ME), which is well known in the lit-
erature, see e.g., [17, 22]. The goal is to find such a p.d.f.,
that maximizes the functional (3) subject to n constraints of
the form E (αi (T )) = ξi , where αi (t) and ξi are known and
i = 1, . . . ,n. The ME p.d.f. satisfying these constraints can be
written in the form [17]

f (t) =
1

Z (λ1, . . . , λn )
exp


n∑
i=1

λiαi (t)
 , (13)

where the "partition function" Z (λ1, . . . , λn ) is the normaliza-
tion factor, Z (λ1, . . . , λn ) =

∫ ∞
0 exp

[∑n
i=1 λiαi (t)

]
dt. The

introduced Lagrange multipliers, λi , are related to the aver-
ages ξi as [22]

−
∂

∂λi
ln Z (λ1, . . . , λn ) = ξi . (14)

It is well known [17], that the distribution maximizing the
entropy on [0,∞) for given E (T ) is the exponential distribu-
tion,

f (t) =
1
E (T )

exp
[
−

t
E (T )

]
, (15)

and entropy h(T ) = 1 + lnE (T ) . Thus the upper bound,
Ch = e, is unique: it is achieved only if f (t) is exponen-
tial. For the exponential distribution holds CV = 1, however,
non-exponential distributions may have CV = 1 too (see the
next section). In other words, the maximum of Ch does not
correspond to any exclusive value of CV . This fact highlights

the main difference between these two measures: the vari-
ability (described by CV ) and randomness (described by Ch)
are not interchangeable notions. High variability (overdisper-
sion), CV > 1, results in decreased randomness for many com-
mon distributions, see Fig. 2, although there are exceptions,
e.g., the Pareto distribution discussed later.

In order to find the ME distribution on [0,∞) given both
E (T ) and CV , we first realize that the problem is equivalent
to finding the ME distribution given E (T ) and E

(
T2

)
. Ap-

plying the Lagrange formalism results in a p.d.f. based on the
Gaussian, with the probability of all negative values aliased
onto the positive half-line,

f (t) =
1
Z

exp
[
−

(t − α)2

2β2

]
, (16)

where

Z = β

√
π

2

1 + erf

 α
√

2β

 . (17)

The density in Eq. (16) is also known as the density of the
folded normal r.v. [23]. The parameters α, β > 0, and E (T ) ,
CV are related as

E (T ) = β +
β2

Z
exp

(
−
α2

2β2

)
, (18)

CV = β

√
exp

(
α2

β2

)
−
α

Z
exp

(
α2

2β2

)
−
β2

Z2 ×

×

[
α exp

(
α2

2β2

)
+
β2

Z

]−1

.

(19)

The entropy and FI can be calculated for Eq. (16) to be

h(T ) =
1
2
−

α

2Z
exp

(
−
α2

2β2

)
+ ln Z, (20)

J (T ) =
1
β2

[
1 −

α

Z
exp

(
−
α2

2β2

)]
. (21)

Note, that CV in Eq. (19) is limited to CV ∈ (0,1), and
therefore the p.d.f. in Eq. (16) provides a solution to the ME
problem only in this range. The density of the ME distribu-
tion given by Eq. (16) is shown for different values of CV in
Fig. 1. Although it is not possible to express α, β in terms
of E (T ) ,CV from Eqns. (18) and (19), we obtain all dis-
tinct shapes (neglecting the scale) of the folded normal den-
sity by fixing, e.g., β = 1 and varying α ∈ (−∞,∞), since
limα→−∞ CV (α) = 1, limα→∞ CV (α) = 0 and noting that
CV (α) is monotonously decreasing. In the limit CV = 1 the
density in Eq. (16) becomes exponential, and for CV > 1 there
is no unique ME distribution. However, we can always con-
struct a p.d.f. with CV > 1, which is arbitrarily close to the
exponential p.d.f., e.g., almost-exponential with a small peak
located at some large value of t. Therefore, the maximum
value of entropy is 1 + lnE (T ) − ε for CV > 1, where ε > 0
can be arbitrarily small. The corresponding Ch is shown in
Fig. 2.
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3.3. Extrema of Fisher information and its relation to entropy

From Eqns. (10) and (12) follows CJ > 0. Similarly to Ch ,
the lower bound is not achieved by a unique distribution, since
any continuous, highly peaked density (possibly multimodal)
approaches it. Determination of the maximum value of CJ is,
however, more difficult. In the following we solve the problem
of CJ maximization (FI minimization) subject to ξ = E (T ) ,
both when the regularity conditions hold and when they do
not, see Fig. 1.

It is convenient [1, 2] to rewrite the FI functional by em-
ploying the real probability amplitude u(t) =

√
f (t), so that

Eq. (10) becomes

J (T ) = 4
∫
T

u′(t)2 dt, (22)

where u′(t) = du(t)/dt. The extrema of FI satisfies the Euler-
Lagrange equation

∂L
∂u
−

d
dt

∂L
∂u′

= 0, (23)

where the Lagrangian L is

L =

∫
T

u′(t)2 dt + λ1

[∫
T

u(t)2 dt − 1
]

+

+λ2

[∫
T

tu(t)2 dt − ξ
]
, (24)

and the multiplicative constants resulting from the substitution
f → u are contained in Lagrange multipliers λ1, λ2. Substi-
tuting from Eq. (24) into Eq. (23) results in the differential
equation

u′′(t) − u(t)[λ1 − λ2t] = 0. (25)

The solution to this equation can be written as [24]

u(t) = C1Ai

λ1 + λ2t

λ2/3
2

 + C2Bi

λ1 + λ2t

λ2/3
2

 , (26)

where C1,C2 are constants and Ai(·),Bi(·) are the Airy func-
tions. Since the integrability of the solution is required, it must
be C2 = 0. The remaining parameters λ1, λ2,C1 are deter-
mined by requiring that

∫ ∞
0 f (t) dt = 1, that the mean equals

ξ and from the regularity conditions ( f (0) = f ′(0) = 0). Due
to the presence of the Airy function, these parameters must be
determined by numerical means. The resulting p.d.f. can be
written as

f (t) =
1
Z1

Ai2
(
a1 +

b1t
E (T )

)
, (27)

where Z1 is the normalizing constant, and a1 � −2.3381, b1 �
1.5587. The expression for FI of this p.d.f. can be obtained
by integrating Eq. (22) and by combining Eq. (25) with the
constraint values,

J (T ) = −4

b3
1 + a1b2

1

E (T ) 2

 � 7.5744
E (T ) 2 , (28)

thus the maximum value of CJ is CJ � 0.363. The density
from Eq. (27) is shown in Fig. 1. Due to convexity of the
FI functional (similarly to the concavity of the entropy func-
tional) in f (t), the maximum of CJ is global. For p.d.f. (27)
also holds CV � 0.447, Ch � 1.77.

If the regularity conditions are relaxed, we arrive by similar
means to the p.d.f.

f (t) =
1
Z2

Ai2
(
a2 +

b2t
E (T )

)
, (29)

where a2 � −1.0188, b2 � 0.6792. It holds CJ � 1.263,
CV � 0.79 and Ch � 2.63, the density is shown in Fig. 1.
The resulting p.d.f. differs from the exponential shape in both
cases, showing that Ch and CJ are two different measures. On
the other hand, the p.d.f. which achieves maximum Ch can be
fitted to approximate the extremal density of CJ rather well
(shown in Fig. 1), further demonstrating the complex relation-
ships between CV , Ch and CJ . Particularly, even though the
shape of CJ -maximizing (C-R not valid) density differs from
the exponential density, it holds Ch � 2.63, which is close
to the maximum value Ch = e � 2.72 (corresponding to the
exponential density).

The main properties of the dispersion coefficients CV , Ch

and CJ are summarized in Table 1. The evenness of the p.d.f.
(described by Ch) is related to the “smoothness” of the den-
sity (described by CJ ). However, more detailed analysis of
CJ shows, that Ch and CJ are not interchangeable, and that
the requirement on the differentiability of f (t) plays an im-
portant role. Namely, CJ is sensitive to the modes of the den-
sity, while Ch is sensitive to the overall spread of the density.
Since multimodal densities can be more evenly spread than
unimodal ones, it is obvious that the behavior of Ch cannot be
deduced from CJ (and vice versa).

Another relationship between Ch and CJ follows from the
de-Bruijn’s identity [17, p.672]

∂

∂ε
h(T +

√
εZ )

�����ε=0
=

1
2

J (T ), (30)

where r.v. Z ∼ N (0,1) is standard normal; and from the
entropy power inequality [17, p.674]

e2h(X+Y ) ≥ e2h(X ) + e2h(Y ) , (31)

for independent r.v.’s X and Y . The entropy of r.v.
√
εZ in

Eq. (30) is h(
√
εZ ) = 1

2 ln 2πeε, thus from Eq. (31) we have

h(T +
√
εZ ) ≥

1
2

ln
[
e2h(T ) + 2πeε

]
. (32)

Taking the derivative with respect to ε and evaluating it at
ε = 0 leads to

πe1−2h(T ) ≤ J (T ), (33)

with equality if and only if T is Gaussian (the inequality is
thus always strict in the context of this paper). In terms of the
relative dispersion coefficients Ch , given by Eq. (5), and CJ ,
given by Eq. (12), we have from Eq. (33)

ChCJ ≤
1
√
πe
. (34)
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CV Ch CJ

Interpretation Distribution of the probability mass
with respect to E (T )

Predictability of the outcomes of T Smoothness of f (t )

Sensitive to Probability of the values away from
E (T )

Concentration of the probability
mass

Changes in f ′ (t ), modes

Assumptions Var(T ) exists No assumptions f (t ) continuously differentiable for
t > 0
and(∗) f (0) = f ′ (0) = 0

Minimum 0 0 0

Minimizing density δ (t − E (T ) ) Not unique Not unique

Maximum ∞ e 1.263
0.363(∗)

Maximizing density Not unique exp [−t/E (T ) ] /E (T ) Ai2 [a + bt/E (T ) ] /Z
Peaked unimodal
f (t ) → δ (t − E (T ) )

→ 0 → 0 → 0

Peaked multimodal
f (t ) →

∑
i δ (t − τi )

> 0 → 0 → 0

Extreme variance of T → ∞ ≥ 0 ≥ 0
f (t ) exponential implies CV = 1 equal to Ch = e implies CJ = 1

Table 1. Summary of properties of the discussed statistical dispersion coefficients of positive continuous random variable T with probability
density function f (t) and finite mean value E (T ) . The starred(∗) entries are valid if the Cramer-Rao bound holds.
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Figure 1. Comparison of probability density functions maximizing
the relative dispersion coefficients, Ch and CJ , for different values of
coefficient of variation, CV , and E (T ) = 1.

4. APPLICATIONS

4.1. Lognormal and Pareto distributions

Both lognormal and Pareto distributions appear in a broad
range of scientific applications [25]. The lognormal distri-
bution is found in the description of, e.g., concentration of
elements in the Earth’s crust, distribution of organisms in en-
vironment or in human medicine, see [26] for a review. The
Pareto distribution is often described as an alternative model
in situations similar as in the lognormal case, e.g, the sizes
of human settlements, sizes of particle or allocation of wealth
among individuals [27, 28]. Another common aspect of log-
normal and Pareto distributions is, that both can be derived

from exponential transforms of common distributions: normal
and exponential.

The lognormal p.d.f., parametrized by the mean value and
coefficient of variation, is

f ln(t) =
1

t
√

2π ln(1 + C2
V )
×

× exp
−

1
8

[
ln(1 + C2

V ) + 2 ln(t/E (T ) )
]2

ln(1 + C2
V )

 .
(35)

The coefficients Ch and CJ of the lognormal distribution can
be calculated to be,

Ch =
√

2πe

√√
ln(1 + C2

V )

1 + C2
V

, (36)

CJ =

√√
ln(1 + C2

V )

[1 + C2
V ]3[1 + ln(1 + C2

V )]
. (37)

The dependencies of Ch and CJ on CV are shown in
Fig. 2a, b. We see, that both Ch and CJ as functions of CV

show a “∩” shape with maximum for CV =
√

e − 1 � 1.31
(for Ch) and around CV � 0.55 (for CJ ), confirming that
each of the proposed dispersion coefficients provides a dif-
ferent point of view. The max Ch p.d.f., Eq. (16), exists only
for CV ≤ 1, for CV > 1 the upper bound Ch = 1 is shown in
Fig. 2a. Note, that the max Ch distribution does generally not
satisfy the regularity conditions, since f (0) , 0.

The dependence of CJ on Ch is shown in Fig. 2c. We ob-
serve, that Ch and CJ indeed do not describe the same quali-
ties of the distribution, since for the lognormal distribution a
single Ch value does not correspond to a single CJ value (and
vice versa). In the lognormal case, the dependence between
Ch and CJ forms a closed loop, where Ch = CJ = 0 for both
CV → 0 and CV → ∞. In other words, both Ch and CJ fail to
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distinguish between very different p.d.f. shapes (CV → 0 or
CV → ∞).

The p.d.f. fP (t) of the Pareto distribution is

fP (t) =


0, t ∈ (0,b)
abat−a−1, t ∈ [b,∞)

(38)

with parameters a > 0 and b > 0 (the expression in terms
of E (T ) ,CV is cumbersome). Note, that E (T ) exists only if
a > 1 and Var(T ) only if a > 2, thus we restrict ourselves
to the case a > 1 if only Ch and CJ are to be evaluated, and
additionally to a > 2 if CV is required. From Eq. (38) follows
that fP (t) is not differentiable at t = b, thus J (T ) cannot be
interpreted in terms of the Cramer-Rao bound, although J (T )
is finite for all a > 0.

The parameters a and b are related to E (T ) and CV by

a = 1 +

√
1 + C2

V

CV
, (39)

b = E (T )
[
1 + C2

V − CV

√
1 + C2

V

]
. (40)

The coefficients Ch and CJ of the Pareto distribution can be
expressed in terms of parameter a as

Ch =
a − 1

a2 exp
(
1 +

1
a

)
, (41)

CJ =
(a − 1)

√
2 + a

√
a3(1 + a)

. (42)

Both Ch and CJ have non-zero limit as CV → ∞, namely
Ch =

√
e3/4 � 1.12 and CJ = 1/(3

√
2) � 0.2357. How-

ever, while Ch as a function of CV is monotonously increas-
ing, CJ attains its maximum value, max CJ � 0.2361, for
CV � 2.3591 (Fig. 2). The monotonous shape of Ch ver-
sus the non-monotonous shape of CJ in dependence on CV is
a significant qualitative difference in the behavior of Ch and
CJ , although the effect is numerically very small. The shape
of the dependence between Ch and CJ forms a closed loop if
both a > 2 and 2 ≥ a > 1 regions are added together, since
Ch = CJ = 0 occurs for both CV → 0 and a → 1 (CV does
not exist).

4.2. Example: lognormal mixture

Finally, we analyze a more complex example, a mixture
of two distributions of the same type. The mixture models
are met in diverse situations, e.g., in modeling of populations
composed of subpopulations, in neuronal coding of odorant
mixtures [29] or in the description spiking activity of bursting
neurons [30, 31].

Recently, Bhumbra and Dyball [32] have successfully em-
ployed a mixture of two lognormal distributions to describe
the neuronal firing in supraoptic nucleus.

The p.d.f. of the lognormal mixture model is

fm (t) = p f ln(t; µ1,CV1) + (1 − p) f ln(t; µ2,CV2), (43)

where 0 < p < 1 gives the weight of mixture components,
and f ln(t; µ,CV ) is the lognormal density parametrized by the
mean µ and CV given by Eq. (35). The lognormal mixture
does not allow to express Ch or CJ in a closed form. Numer-
ical evaluation of the involved integrals is more convenient in
terms of a logarithmically transformed r.v. X , X = ln T , since
X is described by a mixture of two normals. Let the density
of the r.v. X be denoted as gm (x), then

gm (x) = pφ(x,m1, s1) + (1 − p)φ(x,m2, s2), (44)

where φ(x,m, s) = exp[−(x − m)2/(2s2)]/
√

2πs2 is the den-
sity of the normal distribution with mean m and variance s2.
The mean value, µ = E (T ) , and CV of the random variable T
can be expressed as

µ =p exp

m1 +
s2

1

2

 + (1 − p) exp

m2 +
s2

2

2

 , (45)

CV =
1
µ

[
p exp

(
2m1 + 2s2

1

)
+

+(1 − p) exp
(
2m2 + 2s2

2

)
− µ2

]1/2
.

(46)

Since it holds fm (t) = gm (ln t)/t and dx = dt/t, the entropy
h(T ), given by Eq. (3), can be expressed by employing gm (x)
as

h(T ) = h(X ) + E (X ) (47)

where h(X ) is the entropy of r.v. X and E (X ) = pm1 + (1 −
p)m2 is the mean value of r.v. X .

Similarly, we employ r.v. X for the evaluation of CJ , since
it holds

d
dt

gm (ln t) = e−x
d
dx

gm (x), (48)

thus Eq. (10) can be written in terms of gm (x) as

J (T ) =

∫ ∞
−∞

[
1

gm (x)
dgm (x)

dx
− 1

]2

e−2xgm (x) dx. (49)

The parametric space of the lognormal mixture model is large,
in the following we illustrate the behavior of this model just
in two different situations.

First, we vary the weight p while keeping the other param-
eters fixed, Fig. 3 (top row). While the mean value, E (T ) ,
decreases with p monotonically, CV reaches its maximum
CV � 1.4 for p � 0.5. The shapes of Ch and CJ in de-
pendence on CV are radically different: Ch initially increases
while CJ decreases. This difference in behavior is explained
by the basic properties of Ch and CJ , namely, that Ch is lowest
when the p.d.f. is most concentrated (smallest CV ), however,
the shape of the density is “smoother” for higher values of
CV . Obviously, this behavior is distribution-dependent. Fur-
thermore, to each Ch corresponds a unique CV (the reverse
statement is not true), while the relationship between CJ and
CV is non-unique both ways. The relationship between CJ and
Ch is unique only in the sense that to each CJ corresponds a
unique Ch (the reverse statement is not true).
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Figure 2. Relationships between CV , Ch and CJ for the lognormal, Pareto and Ch -maximizing distribution. The max Ch density is unique for
CV ≤ 1, for CV > 1 only the upper bound can be given. The dependence of Ch on CV for the lognormal has a global maximum, while for the
Pareto distribution Ch grows monotonously. For all distributions holds Ch → 0 as CV → 0. For the lognormal distribution the dependence of
CJ on CV resembles a scaled version of the Ch -CV dependence. For the Pareto distribution the CJ -CV dependence shows a global maximum
at CV � 2.36, contrary to the monotonicity of the Ch -CV dependence. This confirms that “smoothness” and “evenness” of the distribution are
different notions, although, e.g., CJ = 0 for CV → 0 for all distributions. The Pareto distribution with parameter 1 < a ≤ 2 is added to the
Ch -CJ dependence plot, since for this case both Ch and CJ can be calculated but CV is undefined.
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Figure 3. Top row: lognormal mixture with variable weight of the components, p ∈ [0,1], in the direction of arrows (m1 = −1, m2 = −0.5,
s1 = 0.2 and s2 = 1). Although E (T ) decreases with p, CV exhibits maximum at p � 0.6. While the relationship between CV and CJ is
non-unique, Ch describes CV uniquely (although the reverse statement is not true). Bottom row: lognormal mixture with increasing separation
between the mean values of the logarithmically transformed components, m2 ∈ [−1,2], in the direction of arrows (p = 0.2, m1 = −1, s1 = 0.2
and s2 = 0.5). Although the mean value E (T ) and CV increase and CJ decreases monotonically, the shape of Ch is unimodal with maximum
at CV � 0.69. The example shows the specific sensitivity of CJ to modes (CJ decreases as the modes become more apparent), while Ch is
sensitive to the overall spread (at CV � 0.69 the bimodal distribution is more evenly distributed than for any other value of CV ).
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In the second example, shown in Fig. 3 (bottom row), we
vary the parameter m2. Both E (T ) and CV increase mono-
tonically with increasing m2. While CJ decreases monoton-
ically, Ch shows a unimodal behavior with maxima around
CV � 0.69. Thus, although the shape of fm (t) becomes
increasingly bimodal with growing m2 (i.e., CJ decreases),
at the same time the distribution becomes more spread (or
equiprobable, thus Ch increases) up to a point CV � 0.69.
From that point on, the bimodality becomes too strong and
decreases the evenness (or equiprobability) of the distribution
and both Ch and CJ decrease. The increasing tendency of
the density to become multimodal (decreasing CJ ) may re-
sult in more unpredictable outcomes of the random variable T
(increasing Ch). Both these examples show, that Ch and CJ

describe different aspects of the p.d.f. shape.

5. DISCUSSION AND CONCLUSIONS

We propose and discuss two measures of statistical disper-
sion for continuous positive random variables: the entropy-
based dispersion (Ch) and the Fisher information-based dis-
persion (CJ ). Both Ch and CJ describe the overall spread
of the distribution differently than the coefficient of variation.
While Ch is most sensitive to the concentration of the proba-
bility mass (the predictability of random variable outcomes),
CJ is sensitive to the modes of the p.d.f. or any non-smothness
in the p.d.f. shape in general. The difference between Ch and
CJ is further demonstrated by the fact, that the distributions
maximizing their values are not the same. On the other hand,

we do not claim that Ch (or CJ ) is “more informative” than
CV due to taking into account, e.g., higher moments of the
distribution. For example, one can find different distributions
with equal CV ’s but differing Ch’s, and vice-versa, distribu-
tions with equal Ch’s but differing CV ’s, see Fig 2a.

It is also important to emphasize what is the benefit of em-
ploying the proposed measures once the full distribution func-
tion (and therefore a complete description of the situation) is
known. The answer is, that it is often required to compare
(or “categorize”) individual distributions according some spe-
cific property, i.e., to assign a number to each function. The
advantage of employing the newly proposed measures lies in
the possibility to describe p.d.f. qualities from different points
of view, that might be of interest in various applications, see
e.g., [1, 2, 9]. The parametrical estimates of the proposed co-
efficients (for both simulated and experimental data from ol-
factory neurons) were treated in detail in [33]. However, it is
natural to ask for the non-parametric versions, which are ar-
guably more valuable in practice. Lansky and Ditlevsen [34]
discussed the disadvantages of the “classical” CV estimator
based on sample mean and deviation, proposing solutions es-
pecially for the problem of biasedness. Non-parametric reli-
able estimates of the entropy (and thus of Ch) are well known
[35, 36]. Recently, Kostal and Pokora [37] employed the max-
imum penalized likelihood method of Good and Gaskins [38]
to jointly estimate Ch and CJ from simulated data.
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