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Coding accuracy is not fully determined by the neuronal model

Lubomir Kostal∗ and Petr Lansky
Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic

It is automatically assumed that the accuracy, with which the stimulus can be decoded, is entirely determined
by the properties of the neuronal system. We challenge this perspective by showing that the identification
of pure tone intensities in an auditory nerve fiber depends both on the stochastic response model and on the
arbitrarily chosen stimulus units. We expose an apparently paradoxical situation in which it is impossible to
decide whether loud or quiet tones are encoded more precisely. Our conclusion reaches beyond the topic of
auditory neuroscience, however, as we show that the choice of stimulus scale is an integral part of the neural
coding problem and not just a matter of convenience.
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INTRODUCTION

One of the primary goals of neuroscience is to understand
how neurons encode and process information about their envi-
ronment. The problem is often approached by examining the
degree to which the neuronal response reflects the stimulus
feature. The coding accuracy, with which the stimulus can be
ultimately decoded from the observed responses, is of partic-
ular interest. Comparing this precision for different types of
responses (e.g., counts of action potentials or intervals in be-
tween them) then yields an important evidence about the prin-
ciples of neural coding. The evaluation of the best decoding
precision can be quite involved mathematically [1], instead it
is often more practical to employ the Cramér-Rao bound on
the mean square error (MSE) [2–10].

In this paper we show how the deduced coding preci-
sion changes under one-to-one stimulus re-parameterizations
where, intuitively, no information loss or gain is expected.
Such behavior differs from the properties of the Shannon and
Kullback information measures [11]. From this perspective,
the choice of stimulus units is not a matter of convenience, a
fact whose consequences seem to have been overlooked in the
neuroscience literature so far.

METHODOLOGY

The observed neuronal response varies randomly across tri-
als [12–14]. The stimulus-response relationship is therefore
defined probabilistically, in terms of the distribution function
R ∼ f (r; θ), where θ is the stimulus value and R is the random
variable describing the response [13, 15]. It is known from
statistics that any unbiased decoding procedure based on the
elicited response cannot identify the true stimulus with MSE
smaller than the the Cramér-Rao bound [16],

MSE(θ) ≥
1

J (θ)
, (1)
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where J (θ) is the Fisher information,

J (θ) = E
[
∂ log f (R; θ)

∂θ

]2

. (2)

The Cramér-Rao bound is usually tight for the maximum-
likelihood decoder, as the response variability decreases or the
size of neuronal population increases [13].

The stimulus value θ can be equivalently expressed in dif-
ferent physical units as λ = ϕ(θ), where the function ϕ is
one-to-one. The models f (r; θ) and f (r; λ) describe the same
neuronal system equally well and the bound on the decoding
precision of λ becomes [16, p. 115],

MSE(λ) ≥
1

[(ϕ−1)′(λ)]2 J
(
ϕ−1(λ)

) , (3)

where J (·) is given by Eq. (2) and the denominator on the
right-hand side of Eq (3) plays the role of Fisher information
about λ.

RESULTS AND DISCUSSION

The main message of this paper stems from the fact that
Fisher information depends on the parameterization of the
problem, as seen from Eq. (3). Usually, results obtained un-
der different coordinate or physical unit systems are expected
to be identical (invariant). We show that the dependence in
Eq. (3) is not benign and affects the interpretation of cod-
ing accuracy greatly. The implied consequences are of broad
validity and the actual physiological identity of the neuronal
model is of lesser importance here.

In the classical study, Winslow and Sachs [17] investigated
the response of cat auditory nerve fibers to a varying sound
pressure level of a pure tone. Ensembles of fibers best re-
sponding to 8 kHz sound frequency were chosen. The rate-
level function of the fiber type considered here was deter-
mined by Winslow and Sachs [17, Eq. (A7)] as

µ(θ) =
10cθ/20rm

10tE /20(1 + 10−tI /2010θ/10)c/3 + 10cθ/20 + rsp , (4)
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Figure 1. Choice of stimulus units affects the coding accuracy (Fisher information). (a) Rate-level function of cat auditory nerve fiber best
responding to 8 kHz sound frequency in dependence on the sound pressure level (loudness) in dB. The stimulus range yielding Poissonian
statistics of spike counts is marked. (b) Fisher information about the sound pressure level. (c) The same neuronal model as in (a), the stimulus
is equivalently expressed as the sound pressure in Pascals. (d) Fisher information about the sound pressure for the same stimulus range as
in (b). It is not obvious whether quiet or loud tones are better identified by the system unless the stimulus units are specified. The optimal
stimulus intensity (maximal Fisher information) depends on the unit choice and occurs at inconsistent values (b, d): J (θ) is maximized at
θ � 44.8 dB SPL (p � 3.48 mPa), while J (p) is maximized at p � 0.62 mPa (θ � 29.8 dB SPL).

where the stimulus θ is the sound pressure level expressed in
decibels (dB SPL) and the mean response µ(θ) is given in
spikes per second (AP/s). The parameter tE = 89.4 dB SPL
determines the response threshold, t I = 100 dB SPL is a
parameter related to the two-tone suppression model [18],
rm = 135.1 AP/s is the maximum rate change which can be
observed in response to a pure tone stimulus, rsp = 0.5 AP/s
is the spontaneous discharge rate and c = 1.77 is a model
constant. The rate-level function is shown in Fig. 1a.

The response spike-count distribution in auditory nerve
fibers is reported to be close to Poisson [17, 19], especially if
the mean response frequency is below 40 AP/s [20] (marked
in Fig. 1a), above that level the effect of maximum physiologi-
cal firing rate becomes apparent. The probability of observing
n spikes during time window ∆ is therefore

Pr(N = n; θ) = e−µ(θ)∆µ(θ)n∆n/n!, n = 0,1, . . . . (5)

The Eq. (5) represents the stochastic model of the fiber since
the response (in AP/s) is simply r = n/∆. The actual value

of ∆ depends on the experimental protocol; in accord with
Winslow and Sachs [17] we set ∆ = 500 ms. Fisher informa-
tion for the model in Eq. (5) is shown in Fig. 1b for the range
of 25–47 dB SPL.

So far, the stimulus intensity was expressed in dB SPL.
Equivalently, the tone loudness is expressed in Pascals (Pa)
by the effective sound pressure, p, as

p = 10θ/20pref , (6)

where pref = 20 µPa [21]. The relationship between θ and p
is one-to-one and monotonic so that louder tones correspond
to higher pressures and larger values of dB SPL. The tuning
curve in Eq. (4) parameterized by the sound pressure is shown
in Fig. 1c (p spans the same range as θ in Fig. 1a) and the
gray region 0.3–4.5 mPa corresponds to 25–47 dB SPL. Quali-
tatively, Fisher information J (p) (Fig. 1d) is strikingly distinct
from J (θ) (Fig. 1b). Loud tones result either into higher (b) or
lower (d) Fisher information values when compared to quiet
tones. The maximum of J (θ), corresponding to the best iden-
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tifiable (optimal) stimulus, occurs at at θ � 44.8 dB SPL,
yielding p � 3.48 mPa (Fig. 1d) due to Eq. (6). On the other
hand, the maximum of J (p) occurs at p � 0.62 mPa, corre-
sponding to θ � 29.8 dB SPL (Fig. 1b). The choice between
Pascals or decibels is arbitrary and therefore the conclusions
on stimulus optimality above are ambiguous. More precisely,
the conclusions are inseparable from the particular choice of
units.

The dependence of Fisher information on the stimulus scale
must be taken into account and requires an appropriate inter-
pretation. A minute difference in values of p close to zero
transforms due to Eq. (6) into a substantial numerical dif-
ference in θ. Similarly, if a large decoding error is made
for high p the corresponding error on the log-scale may be
marginal. Thus the maximum-likelihood decoding follows
the Cramér-Rao bound in both cases, and from this point of
view there is no contradiction. Also note that maximum of
the likelihood function is invariant with respect to stimulus
re-parameterization. If for some observed response θ̂ and p̂
are the solutions to the maximum-likelihood problem in the
respective parameterizations, then these solutions are related
by Eq. (6). However, the decoding precision depends on the
“concentration” of these maxima and therefore it is critically
affected by the re-scaling of the parameter. The usage of
dB SPL units in auditory neuroscience is at least partially mo-
tivated by the well-known Weber’s law. However, the law is
known to be neither universal across different sensory modal-
ities nor exact [22, 23].

In situations where the response variability is independent
of the stimulus intensity, or when the response variability is
not considered, the maximal slope of the monotonous rate-
intensity function is considered as the most sensitive or op-
timal stimulation point [3, 24]. This can also be seen as a
special case of the inference based on maximal Fisher infor-
mation [25]. For example, olfactory receptor neurons exhibit

sigmoidal (Hill-type) tuning curves with respect to the log-
concentration of the odorant [26]. The maximal slope occurs
at the inflection point of the sigmoid and thus at non-zero con-
centrations. However, the same system exhibits the point of
maximal slope precisely at the zero concentration, whenever
decadic concentrations are employed. It is also worth noting,
that the position of the highest slope depends on the param-
eterization of both stimulus and response, while Fisher infor-
mation is invariant under response re-parameterizations.

In addition, according to the efficient-coding hypothe-
sis [27], sensory neurons are adapted to the statistical prop-
erties of the signals to which they are naturally exposed. We
thus expect a correspondence between the theoretically opti-
mal stimulation (based on the model inference) and natural
signals. Since the theoretical optimum is arbitrary (affected
by the stimulus scale), we need to know what is the coordi-
nate system that actually matters to sensory neurons. We find
it quite unlikely that it would correspond precisely to, e.g., the
units given by the standard SI system. Unless the mapping
from the convenient physical units to the units of neuronal
“interest” is known, Fisher information must be considered
carefully as the criterion of stimulation optimality.

Finally, we note that the non-invariance of J (θ) might be
of no importance when employed in a different context. For
example, both the low-noise [8, 10] and the high-noise [28]
approximations to the Shannon’s mutual information include
J (θ) inside their equations. However, the transformation fac-
tor [(ϕ−1)′(·)]2 in Eq. (3) cancels out and hence these approx-
imations are also invariant with respect to coordinate trans-
forms.
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