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Stimulus reference frame and neural coding precision

Lubomir Kostal�
Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic

Any particular stimulus intensity, as a physical quantity, can be equivalently described in different unit sys-
tems. Researchers automatically expect the methodology and the inference obtained about the neural coding
precision to be independent from such a subjective choice. We show, however, that the Fisher information,
which is arguably the most popular measure of coding accuracy, may yield incompatible and in fact arbitrary
results just by re-evaluating the identical stimulation scenario in transformed units. We consider only regular
scale transformations given by strictly increasing and differentiable functions. On one hand, our results point
to a potentially problematic aspect of the Fisher information application. On the other hand, we speculate that
the unwanted transformation covariance may be removed by considering the psychophysical scale based on
the ideal observer paradigm. We show that such scale implies constant Fisher information and that the match-
ing stimulus distribution is given by the Jeffreys prior. The psychophysical perspective thus provides a novel
justification for the special role of the Jeffreys prior in neural coding theory.
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1. INTRODUCTION

The methods of signal estimation and detection theory play
an important role in the study of the neuronal coding prob-
lem. In particular, the Fisher information and the Cramér-
Rao bound are frequently employed to address the theoreti-
cal limits on the coding and discrimination precision [1–12].
Comparing this precision for different types of responses (e.g.,
counts of action potentials or intervals in between them) then
yields a potentially important piece of evidence about the prin-
ciples of neural coding. In this regard, the influential efficient
coding hypothesis [13] states that neuronal responses are ad-
justed, through evolutionary and adaptive processes, to opti-
mally encode such stimulus statistics that matches the local
sensory environment [14–20]. Consequentially, it is often ex-
pected that the high-probability stimulus regions match the
peaks of the coding accuracy [21–26].

In this paper we investigate the general consequences of
the measurement scale choice on the coding accuracy, as de-
scribed by the Fisher information. We focus especially on
the potential ambiguity of the conclusions that may be drawn
from the shape of the Fisher information curve, viewed ei-
ther as a function of the stimulus intensity (Section 3.1) or
as a function of the probability of the stimulus intensity (Sec-
tion 3.2). Finally, we speculate that the proper scale, on which
the coding accuracy should be interpreted, results from the
psychophysical function relating the decoding error to the just
noticeable difference in perception (Section 3.3). We show, by
following the efficient coding principle on the psychophysical
scale, that the optimal stimulus distribution is given by the
Jeffreys prior. The Jeffreys prior arises also as the capacity-
achieving input distribution in the limit of vanishing noise dur-
ing the information transmission [27–32], hence our results
provide yet another interpretation of its optimality.
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2. METHODS

The neural coding problem is often approached by virtue
of the stimulus-response model, in which the neuronal re-
sponse r (often given by the firing frequency) is related to
the stimulus parameter � . It is well known that the response
varies randomly across trials [21, 33, 34]. The stimulus-
response model, denoted also as the encoding model, is there-
fore fully described in terms of the response probability den-
sity (or mass) function f .r I �/.

The stimulus � can be equivalently evaluated in different
physical or measurement units Œ��, where � D '.�/, provided
that the function ' is bijective. In this paper we restrict our-
selves to regular transformations of the measurement scale,
defined as follows.

Definition 1. Let the stimulus parameter � take values in a
closed interval of the real line Œ�min; �max�. The new stimulus
parameter � 2 Œ�min; �max� is given by the regular transforma-
tion of � ,

� D '.�/; (1)

if ' is strictly increasing and continuous on Œ�min; �max� and
differentiable on .�min; �max/.

The regular transformations are appealing since they pre-
serve the relative ordering of the stimulus intensities on var-
ious scales, i.e., �1 > �2 implies '.�1/ > '.�2/. An ex-
ample of such ' is given by the sound loudness parameter:
one may use the units of sound intensity, pressure or level,
which are mutually related by quadratic and logarithmic trans-
formations [35]. The probability distributions f .r I �/ and
f .r I�/ thus describe the same encoding model, and there is
no persuasive preference for the � -parameterization over the
�-parameterization, perhaps besides convenience.

The problem of the stimulus coding precision, i.e., the ex-
act evaluation of the smallest achievable error, is generally
non-trivial [11, 36]. It is often more practical to evaluate the
Cramér-Rao bound on the decoding mean square error (MSE)
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instead. If there is no bias in the decoding and the model sat-
isfies certain regularity conditions [37, 38], the Cramér-Rao
bound states that the MSE for given stimulus � satisfies

MSE.�/ �
1

J� .�/
: (2)

The function J� .�/ is the Fisher information,

J� .�/ D

Z �
@ logf .r I �/

@�

�2
f .r I �/ dr; (3)

which is strictly positive and continuous on Œ�min; �max�, see,
e.g., Brown and Gajek [39] and Ibragimov and Has’minskii
[38, Chapter 7] for details.

The Fisher information J�.�/ in the regularly transformed
units is related to the original function J� .�/ as

J�.�/ D

�
d'�1.�/

d�

�2
J�
�
'�1.�/

�
; (4)

which can be proven by employing the chain rule for deriva-
tives [40], with '�1 denoting the inverse to Eq. (1). In this
paper we examine the potential effect of regular transforma-
tions on the inference about neural coding precision (given by
the Fisher information), hence Eq. (4) is of key importance.

Furthermore, the stimulus parameter itself may be a random
variable, distributed according to the probability density func-
tion p� .�/. The corresponding probability density function
p�.�/ in the regularly transformed units is then given by [41]

p�.�/ D p�
�
'�1.�/

� ˇ̌̌̌d'�1.�/
d�

ˇ̌̌̌
: (5)

From Eq. (4) follows that the square root of the Fisher in-
formation transforms similarly to Eq. (5). Therefore, if the
proportionality

p� .�/ /
p
J� .�/; (6)

holds in the stimulus units of � , it holds invariantly as
p�.�/ /

p
J�.�/ in any regularly transformed units. The

particular stimulus distribution given by Eq. (6) is known as
the Jeffreys prior, an important concept in the Bayesian infer-
ence due to the invariance property [42, 43].

3. RESULTS AND DISCUSSION

3.1. Fisher information under regular transformations of the
stimulus measurement units

The profile of the Fisher information as a function of the
stimulus parameter has been investigated extensively in the
computational neuroscience literature. For example, Green-
wood et al. [44] employed J� .�/ to describe the stochas-
tic resonance effect in a generalized McCulloch-Pitts neu-
ronal model. Wilke and Eurich [45] analyzed the accuracy

with which a neural population encodes a number of stimu-
lus features, and found that the stimulus value yielding max-
imal Fisher information is below the mode of the mean re-
sponse curve. More generally, the mode of J� .�/ was em-
ployed to identify the optimal stimulation intensity in a num-
ber of stochastic [8, 46] and empirical [47] neuronal mod-
els. Optimal coding accuracy in terms of latency (time to first
spike after the stimulus onset) was investigated in a similar
way [48, 49]. Jenison and Reale [50] used the Fisher infor-
mation to quantify the estimation precision of multiple sound
localization parameters in the auditory system. And finally,
profiles of J� .�/ and certain information-theoretic measures
were compared in Yarrow et al. [30] and Kostal and Lansky
[51]. See also Pilarski and Pokora [12] for additional refer-
ences.

In a recent study Kostal and Lansky [52] demonstrated that,
paradoxically, the Fisher information cannot be used to decide
whether loud or quiet tones are encoded more precisely in a
classical model of the auditory nerve fiber [53]. The Fisher in-
formation turned out to be an increasing function of the sound
intensity evaluated in decibels (dB SPL), and a decreasing
function of the same intensity in Pascals.

We now prove that the Fisher information of a given encod-
ing model may in fact follow the shape of any desired func-
tion, just by changing the stimulus measurement scale.

Theorem 1. Let g.x/ > 0; x 2 Œ0; 1� be a Lipschitz continu-
ous function. For any given J� .�/ there exists a unique reg-
ular transformation ' in Eq. (1) and a constant a > 0 such
that

J�.�/ D ag.�/; (7)

and �min D '.�min/ D 0 and �max D '.�max/ D 1. The
transformation ' is given by the initial value problem

d'.�/
d�

q
ag
�
'.�/

�
D
p
J� .�/; (8)

with '.�min/ D 0.

Proof. Eq. (4) can be also stated as

J� .�/ D

�
d'.�/

d�

�2
J�
�
'.�/

�
: (9)

Although the numerical values of Fisher information in differ-
ent units change accordingly to Eq. (4), the integral of

p
J� .�/

is conserved. To show this we employ the substitution rule and
Eq. (9),

'.�max/Z
'.�min/

p
J�.�/ d� D

�maxZ
�min

q
J�
�
'.�/

�ˇ̌̌̌d'.�/
d�

ˇ̌̌̌
d� D

D

�maxZ
�min

p
J� .�/ d� � C; (10)
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Next, the continuity of g.x/ guarantees that the integral
1Z
0

p
g.x/ dx D G (11)

exists. Therefore, Eq. (7) is a valid requirement only if

a D
C 2

G2
; (12)

since from Eq. (10) follows that it must hold
R 1
0

p
ag.x/ dx D

C . Finally, we substitute Eq. (7) into Eq. (9) and re-arrange
the terms to obtain Eq. (8)

As a special case we find the regular transformation such
that J�.�/ is constant. Let therefore g.x/ D 1 and �max D C
so that J�.�/ D 1. From �min D 0 and Eq. (8) then follows

'.�/ D

�Z
�min

p
J� .z/ dz: (13)

3.2. Matching the Fisher information to the stimulus
distribution

According to the efficient coding principle, the neuronal
coding strategy is adapted to the local stimulus statistics (see,
e.g., Wark et al. [24] and references therein). In other words,
the coding accuracy and the stimulus probability distribution
are expected to be related. In particular, peaks of the Fisher
information are often found near the high-probability regions
of the stimulus distribution, as reported in the auditory coding
of the sound intensity [23, 25, 26, 54], coding of the interaural
level differences [55] and time differences [56]. The situation
has also been investigated in other sensory modalities, e.g.,
in the primary visual cortex [57] and primary somatosensory
cortex [58].

In order to proceed, the notion of “large Fisher information
values matching the high-probability stimulus regions” must
be made more precise. We formalize the requirement by let-
ting the Fisher information vary as a suitable function of the
stimulus probability. The following theorem shows, however,
that almost any desired match between the Fisher information
and the stimulus distribution can be achieved just by choosing
the stimulus unit properly.

Theorem 2. Let the stimulus parameter � be distributed ac-
cording to a continuous probability density function p� .�/ >
0 on Œ�min; �max�. Let h.x/ ¤ ax2; a > 0 be a strictly in-
creasing Lipschitz continuous function on x > 0. For any
J� .�/ ¤ bp2

�
.�/; b > 0 there exists a transformation ' such

that

J�.�/ D h
�
p�.�/

�
; (14)

where p�.�/ is the probability density function of the trans-
formed stimulus parameter, and ' is given by the implicit dif-
ferential equation�

d'.�/
d�

�2
h

�
p� .�/

ˇ̌̌̌
d'.�/

d�

ˇ̌̌̌�1�
D J� .�/; (15)

with �min D '.�min/ D 0.

Proof. Substituting Eq. (14) into Eq. (4) gives

d'�1.�/
d�

D

s
h
�
p�.�/

�
J�
�
'�1.�/

� : (16)

By employing the inverse function theorem,

d'�1.�/
d�

ˇ̌̌̌
�D'.�/

D

�
d'.�/

d�

��1
; (17)

and by substituting Eq. (5) into Eq. (16) we obtain Eq. (15).

The special case h.x/ / x2 reduces Eq. (15) to the alge-
braic form p� .�/ /

p
J� .�/. This is equivalent to the state-

ment of the Jeffreys prior invariance: it is impossible to obtain
p�.�/ /

p
J�.�/ by virtue of a regular transformation unless

Eq. (6) holds in the original � -units already.
The implicit form of Eq. (15) is not immediately useful,

hence we particularize the Theorem 2 to h.x/ D x. We obtain
the transformation that produces the exact numerical match
between any given Fisher information and stimulus distribu-
tion.

Corollary 1. Under the conditions of Theorem 2, the regular
transformation yielding

J�.�/ D p�.�/; (18)

is given by

'.�/ D

�Z
�min

J� .z/

p� .z/
dz: (19)

We illustrate the stimulus rescaling in Eq. (19) on the model
of a rat olfactory receptor neuron [59]. The mean response
�� .�/ (average evoked firing rate in action potentials per sec-
ond) in dependence on the odorant concentration follows the
Hill function

�� .�/ D
FM

1C 10.log10K��/N
: (20)

The stimulus � is the decadic logarithm of odorant concentra-
tion in mol/L, FM is the maximum asymptotic firing rate, K
is the odorant concentration that evokes response rate equal
to FM=2 and N is the Hill coefficient. Let us assume that
the response distribution (for each � ) is a Gaussian with mean
�� .�/ and a Poisson-like relationship between the mean and
variance �2

�
, i.e., �� .�/ D

p
�� .�/, hence the encoding

model is

f .r I �/ D
1p

2��� .�/
exp

�
�
Œr � �� .�/�

2

2�� .�/

�
: (21)

The values of the model parameters depend on the odorant
type, here we choose the typical values FM D 49 spikes/s,
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Figure 1. Regular unit transformation guarantees the match between the given Fisher information and an arbitrary stimulus input distribution.
(A) Stimulus-response model based on rat olfactory receptor neurons electrophysiological recordings [59]. The mean response �� .�/ (solid)
is described by the Hill function and the Gaussian response model with Poisson-like variability is assumed (the standard deviation is indicated
by the gray region). (B) The shape of the Fisher information J� .�/ does not match the shape of the given stimulus distribution p� .�/, e.g., the
region of high J� .�/ does not coincide with the most frequent stimulus. (C) The same neuronal model and stimulation scenario as in (A); the
stimulus (�) is evaluated in the transformed units given by Eq. (19). (D) Although the only change with respect to (B) is that the stimulus is
evaluated in different units, the match between the Fisher information J�.�/ and the input distribution p�.�/ is exact. The conversion function
' between the stimulus evaluated in � -units and in �-units is strictly increasing and differentiable.

N D 1:8 and K D 2:5 � 10�7 mol/L (Fig. 1A), see Rospars
et al. [59] for details. The Fisher information for the model
given by Eq. (21) can be expressed as

J� .�/ D
1C 2�� .�/

2�2
�
.�/

�
d�� .�/

d�

�2
: (22)

Let the stimulus distribution p� .�/ be a Gaussian � �

N.m; s2/, renormalized on the interval Œ�min; �max�, and de-
liberately such that the overall shapes of J� .�/ and p� .�/ do
not match,m D �7:3 and � D 0:6 (Fig. 1B). The transforma-
tion relating the � - and �-description of the odorant concen-
tration, � D '.�/, is given by Eq. (19) and cannot be evalu-
ated in a closed form. The stimulus-response model f .r I �/ is
then equivalently described by f .r I�/. The mean response,
��.�/ D ��

�
'�1.�/

�
, and the accompanying standard de-

viation, ��.�/ D ��
�
'�1.�/

�
, are shown in Fig. 1C. Note

that the Poisson-like mean-to-variance ratio is preserved since
we re-scale only the stimulus variable and not the response
variable. Coincidentally, the mean response in the �-units is

approximately linear over the entire coding range. The Fisher
information J�.�/ and the input distribution p�.�/, given by
Eq. (5), match exactly in the transformed units (Fig. 1D).
The transformation ' relating the old (� ) and new (�) stim-
ulus units is nonlinear, strictly increasing and differentiable
(Fig. 1D).

3.3. Fisher information and the psychophysical function

The psychophysical function describes the perceptual in-
tensity, S , in dependence on the stimulus parameter [60, 61].
Arguably, the most famous psychophysical function example
is the Weber-Fechner law, S / log � [21, 62–64]. In his pio-
neering study, Riesz [65] provided a correction to the Weber-
Fechner law for the perception of sound intensity. Kostal and
Lansky [66] showed that this seemingly small modification
significantly improves the match between the stimulus dis-
tribution and the Fisher information in the study of Watkins
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and Barbour [25]. Motivated by this example we speculate
that, generally, the stimulus measurement scale based on the
psychophysical function yields the proper inference about the
efficient-coding adaptation.

We propose the psychophysical scale of the stimulus pa-
rameter � such that it is proportional to the sensation level,

S D c�; (23)

where c > 0 is a “dimension-correcting” constant. Let,
numerically, be c D 1 for simplicity. The reasoning is
that the just noticeable difference (JND) in the perception,
�S [22, 60, 67, 68] is a function of some increment �� but
not of �. Equivalently, the JND-inducing �� must be inde-
pendent of �. Therefore the unique feature of the stimulus
unit Œ�� is that the coding accuracy can be meaningfully com-
pared for different stimuli intensities. Contrast that with an
arbitrary unit Œ� �: an apparently large variation in J� .�/might
be immaterial for the neural system, provided that the actual
difference in sensation always falls below the JND.

The true psychophysical function is rarely known ex-
actly [60, 64, 65, 69]. However, the JND-inducing �� is of-
ten derived from the Cramér-Rao bound approximation to the
ideal observer error as [21, 67, 68]

�� D D˛
1p
J�.�/

; (24)

where D˛ > 0 is the constant discriminability factor based
on the separation of two Gaussian distributions. Since �� is
independent of �, it must be that J�.�/ is constant. Assuming
that the Fisher information “matches” the stimulus distribu-
tion according to Eq. (14) we have that p�.�/ must be also
constant. However, constant J� and uniform p� together im-
ply that the Jeffreys prior, p� .�/ /

p
J� .�/, holds in the orig-

inal units. We can see that from the reverse form of Eq. (5),

p� .�/ D p�
�
'.�/

� ˇ̌̌̌d'.�/
d�

ˇ̌̌̌
; (25)

which implies j d'.�/= d� j / p� .�/, while Eq. (9) implies
j d'.�/= d� j /

p
J� .�/. Moreover, the regular transforma-

tion from the original (and arbitrary) � -units to the �-units is
given by (cf. Eq. 13)

'.�/ D a

�Z
�min

p
J� .z/ dz; (26)

where a > 0, and hence S / '.�/ is the psychophysical
function.

We illustrate Eq. (26) on the stimulus-response relationship
from Eq. (21). Without loss of generality we put a D 1.
Due to the simplicity of the Gaussian model we can evaluate
Eq. (26) in a closed form as

'.�/ D ˚.�/ � ˚.�min/; (27)

where

˚.�/ D
1
p
2

�
2
p
1C 2�� .�/C log

1 �
p
1C 2�� .�/

1C
p
1C 2�� .�/

�
:

(28)
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Figure 2. The psychophysical scale implies the Jeffreys prior as the
matching stimulus distribution. (A) The stimulus-response model
from Fig. 1A viewed on the psychophysical scale given by Eq. (26).
The stimulus unit transformation relates the original units of � (log10
of the odorant concentration) to the arbitrary psychophysical units of
�. The Fisher information J�.�/ is constant (not shown) and hence
the matching stimulus distribution p�.�/ is uniform. (B) The stim-
ulus distribution transformed back to the units of � is given by the
Jeffreys prior, p� .�/ /

p
J� .�/ (dashed). The Fisher information

(solid) from Fig. 1B is shown for comparison.

The stimulus-response model on the psychophysical scale is
shown in Fig. 2A (cf. Fig. 1A, C), together with the transfor-
mation � D '.�/. The mean response ��.�/ is nonlinear
but J�.�/ D 1, since the response variability depends on �,
and p�.�/ D 1=�max. We have p� .�/ /

p
J� .�/ (Fig. 2B,

dashed) on the original stimulus scale.

4. CONCLUSIONS

Taken together, our results may be summarized in three
main points.

First, we show that the change of measurement units may
not only reverse the monotonicity of the Fisher information
profile as a function of the stimulus parameter [52], but may
potentially result in an arbitrary (e.g., multimodal) form of
dependence. Put more broadly, since the basic principle in
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optimal design is the maximization of Fisher information [70],
this can lead to ambiguous design choices.

Second, we consider the matching between the Fisher infor-
mation profile and the probability of the stimulus parameter,
motivated by the efficient coding hypothesis. We demonstrate
that such matching is only relative, changing with the stim-
ulus reference frame. In this sense, the proper choice of the
stimulus scale is essential for the investigation of the neural
coding precision.

Third, we hypothesize that the stimulus scale which is pro-
portional to the perception intensity provides the natural fixed
point in the continuum of possible different reference frames,
relating the decoding precision to the just noticeable differ-

ence. By approximating the ideal observer error with the
Cramér-Rao bound we show that the psychophysical stimulus
scale implies constant Fisher information, and furthermore,
that the matching distribution on this scale is uniform. The
relationship between the Fisher information and the input dis-
tribution in any other unit systems is then given by the Jeffreys
prior.
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