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Efficient information transfer by Poisson neurons
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Recently, it has been suggested that certain neurons with Poissonian spiking statistics may communicate by
discontinuously switching between two levels of firing intensity. Such a situation resembles in many ways the
optimal information transmission protocol for the continuous-time Poisson channel known from information
theory. In this contribution we employ the classical information-theoretic results to analyze the efficiency of
such a transmission from different perspectives, emphasising the neurobiological viewpoint. We address both
the ultimate limits, in terms of the information capacity under metabolic cost constraints, and the achievable
bounds on performance at rates below capacity with fixed decoding error probability. In doing so we discuss
optimal values of experimentally measurable quantities that can be compared with the actual neuronal recordings
in a future effort.
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1. INTRODUCTION

The problem of information processing and transmission in
the brain is historically one of the most intensively studied
topics in neurosciences [1–3]. Frequently, the theoretical ap-
proach to this problem relies on the methods of information
theory [4] with emphasis on channel capacity as the ultimate
fidelity criterion [5–8]. The operational interpretation of chan-
nel capacity relies on an essentially digital transmission proto-
col (not necessarily binary) and a special encoding-decoding
setup known as the separation assumption [4, 9]. Additionally,
the information rate equal to the capacity is only an asymp-
totic quantity, assuming arbitrarily reliable communication,
infinite decoder complexity and delay. The unconstrained (or
asymptotically achievable) amount of information, however,
might not be the main objective for biological systems, as
metabolic costs and real-time information processing should
definitely be considered [10–12]. In this paper we attempt
to include multiple factors that might affect the efficiency of
the actual information transmission, thus continuing the effort
started in [11, 13, 14].

The available information-theoretic methods do not allow
to include many of the detailed biological phenomena easily
[4, 15]. In particular, different time scales of the dynamics
dictate that dependence on the history and feedback is fre-
quently present in neural systems [16]. On the other hand,
simplified models often provide a satisfactory description of
experimental data [17–19]. The classic Poissonian assump-
tion of neural spiking statistics seems sufficient under broad
circumstances [20, 21] and the capacity of Poisson neurons
has been discussed in the neuroscientific context too [22, 23].
The key advantage here is that a plethora of results is available
for the Poisson communication [24–28], so that the model can
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be employed also outside of the neurobiological context (e.g.,
in [29]).

It was observed in [30] that certain neurons with Poisso-
nian spiking statistics may communicate by discontinuously
switching between two discrete levels of firing intensity. We
calculate the asymptotic limits on reliable communication un-
der such circumstances and we address the problem of the ef-
fective information rate, provided that the coding system is
constrained in its bandwidth and complexity. We believe that
the bandwidth limitation might be of special interest since
neural systems are generally limited by the finite speed of the
underlying chemical and electric processes [3]. The main goal
of this paper is therefore to provide an information-theoretic
interpretation of the results recently obtained by Mochizuki
and Shinomoto [30]. We are convinced that our effort is
timely as the problem of constrained information transmission
has been attracting attention in the theoretical neuroscience
community recently [10–12, 14, 31].

2. METHODS

2.1. Information capacity of the Poisson neuron

Let .˝;F ;P/ be a probability space and Ft a filtration on
F . The neuronal input is described by a stationary stochastic
process �t � 0; t 2 Œ0; T � adapted to Ft . The neuronal re-
sponse is given by the doubly stochastic Poisson process Nt
with intensity �t C �0. In this scenario we assume that �t
is proportional to the driving synaptic current [18, 32, 33],
�0 � 0 is the spontaneous activity rate and Nt is the number
of postsynaptic spikes observed up to time t . The following
two constraints are imposed on the input signal. The peak-
amplitude constraint,

0 � �t � L; (1)
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and the average power constraint

E�
Z T

0

�t dt � %LT; (2)

where 0 � % � 1 is the maximum allowed average-to-peak
ratio of the input signal.

The information capacity (in nats per second) of the point
process Nt is given by

C D lim
T!1

sup
�

1

T
IT .�;N /; (3)

where sup� is over all signals �t satisfying Eqs. (1) and (2),
with no other restrictions on the form of the trajectories or
their statistics. The mutual information between �t and Nt is

IT .�;N / D E�
Z T

0

�
'.�t / � '. O�t /

�
dt; (4)

where

'.x/ D .�0 C x/ log.�0 C x/ � �0 log�0; (5)

O�t D E�.�t jFNt / and FNt is the canonical filtration of Nt
[34, Ch. 6.5]. Hence, the conditional mean O�t is the minimum
mean-square error estimate of �t based on the history of the
process Nt . It was shown in [25] (see also [24] and [34]) that,
remarkably, Eq. (3) can be evaluated in a closed form,

C.%/ DL
�
.1C s/r log.1C s/C .1 � r/s log s�

� .r C s/ log.r C s/
�
; (6)

where

s D�0=L; (7)
r Dmin.%; �/; (8)

� D
1

e

.1C s/1Cs

ss
� s: (9)

If the neuron is not spontaneously active, �0 D 0, then Eq. (6)
reduces considerably to

C.%/ D �Lmin.%; e�1/ logŒmin.%; e�1/�:

The capacity-achieving input signal ��t is a limiting case of
the random telegraph wave, i.e., of the stationary process with
a piecewise constant path taking only the extremal values 0
and L. More precisely, let n be a positive integer and consider
the process �nt which admits the representation [25, 34]

�nt D�
n
0 C n

Z t

0

1.�ns D 0/ ds�

�
n.1 � r/

r

Z t

0

1.�ns D L/ ds Cmnt ; (10)

where r is given by Eq. (8), P Œ�n0 D L� D r and mnt is
a martingale. The capacity achiever is the process ��t D
limn!1 �

n
t . As n grows the rate of transitions between states

�n D 0 and �n D L is unbounded and therefore the optimal
input has infinite bandwidth. The optimal average-to-peak ra-
tio of the input signal equals r . Note that if �0 D 0 and % D 1
(no average-power constraint on �t ) then the probability that
�t D L at any given time equals e�1.

2.2. Metabolic cost of neural activity

Both empirical and theoretical studies suggest that the
metabolic cost of neuronal spiking activity, in terms of ATP
molecules (ATPm) expenditure, is proportional to the firing
rate [35, 36]. By employing the linear model of Laughlin and
Attwell [36] we naturally define the average metabolic costW
(in ATPm per second) evoked by the optimal input signal as

W D .�0 C rL/� C ˇ; (11)

where � D 0:71 � 109 ATPm is the cost of a single spike and
ˇ D 0:34�109 ATPm/s is the basic metabolic rate required to
maintain the membrane potential. In what follows we express
C.%/ in terms of W as C.W /, even though due to Eq. (8)
the same value of W may correspond to different % for high
enough %.

We propose the information efficiency, E (in bit per
ATPm), as the ratio of information capacity to the associated
metabolic cost,

E D
C.W /

W
: (12)

The maximum efficiency with respect to the cost, E� D
maxW E (also known as the capacity per unit cost [37]), rep-
resents the maximum amount of information per ATPm that
can be communicated at arbitrarily low probability of chan-
nel decoding error. The rationale for adopting Eq. (12) as the
efficiency measure lies in the crucial importance of balanc-
ing the performance versus the metabolic workload for living
organisms [11, 38, 39].

2.3. Coding capacity and Wyner’s code

The extension of Shannon’s discrete-time channel coding
theorem for general continuous-time channels is mathemat-
ically non-trivial [40–42]. However, in his seminal work
Wyner [26, 27] proved (among other things) the achievabil-
ity and converse theorems for the information capacity in
Eq. (6) by employing the equivalence between the Poisson
continuous-time channel and a certain discrete-time memory-
less channel. In other words the information capacity of the
Poisson neuron equals its coding capacity. Hence, for any in-
formation rate up to capacity, 0 � R < C , and arbitrary " > 0
there exists a channel code with M � eRT codewords (for T
sufficiently large) such that the average probability of decod-
ing error Pe satisfies Pe � " [4].

The construction of Wyner’s code ensemble with integer
parameters M > 1 and k � 1,

M D beRT c; (13)
k D brM c; (14)

proceeds by dividing the interval Œ0; T � into
�
M
k

�
subintervals

and by assigning the value � D L into .k=M/
�
M
k

�
bins and

� D 0 to the remaining bins (see [26, Sec. III.A] for details).
In this way, M distinct input signal waveforms (codewords)
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are created, each satisfying Eq. (2) while bearing similarity to
the process �nt in Eq. (10). The maximum likelihood decoder
observes the process Nt and identifies the input waveform
based on the spike counts. The probability of mismatch (de-
coding error) for each input waveform is Pe;m. The sequence
of codes provided by Wyner is essentially optimal, satisfying
the Gallager’s random coding bound [4]. Therefore we can
define the achievable average probability of decoding error at
rate R as

Pe , e�E.R/T ; (15)

where E.R/ > 0 for all 0 � R < C and Pe DPM
mD1 Pe;m=M . The coordinate fR;E.R/g can be expressed

in an implicit parametric form in terms of p 2 .0; 1� follow-
ing [26] as

E.R/ D

�
R0 �R; 0 � R < R.1/;
LE1.p/ � pR; R.1/ � R < C;

(16)

with the following functions defined,

�.p/ D

�
1C

1

s

�1=.1Cp/
� 1; q.p/ D min

�
%;

1

�.p/

��
1

.1C p/s�.p/

�1=p
� 1

��
; (17)

R � R.p/ DLs

�
Œ1C q.p/�.p/�p

1C p
q.p/

�
1C

1

s

�1=.1Cp/
log

�
1C

1

s

�
� Œ1C q.p/�.p/�1Cp log

�
1C q.p/�.p/

��
; (18)

E1.p/ Dq.p/C s � Œ1C �.p/q.p/�
1Cps; (19)

and s given by Eq. (7). The value R0 D E.0/ is the cutoff
rate [43],

R0 DLq
�.1 � q�/

�p
1C s �

p
s
�2
; (20)

q� Dmin.%; 1=2/: (21)

The time window T thus plays a similar role to the chan-
nel code blocklength in discrete-time channels [4, Theo-
rem 7.3.2].

2.4. Effective information rate and required bandwidth

The capacity represents the maximal information rate
achievable under the stringent reliability criterion Pe ! 0.
Approaching capacity then requires unbounded coding win-
dows T and infinitely fast switching rates of the input sig-
nal [25, 26]. It is practically impossible to implement such in-
formation transmission schemes. The error exponent E.R/ in
Eq. (15) relates the information rate R, coding window T and
the probability of decoding error Pe . Therefore, we employ it
to analyze the possibility of effective information transfer at
rates below capacity and tolerable value of Pe as follows.

For a fixed value of Pe and rate R we define the required
length of coding window T as

T D max.TP ; Tk/; (22)

where

TP D�
logPe
E.R/

; (23)

Tk D
logd1=re

R
: (24)

Then Eq. (23) follows directly from Eq. (15) and guarantees
that the error probability does not exceed Pe . The condition
in Eq. (24) is necessary since k � 1 in Wyner’s code, and fol-
lows from the combination of Eq. (14) for k D 1 and Eq. (13).
Once the coding window T is determined, the M;k param-
eters of Wyner’s code may be calculated through Eqs. (13)
and (14). The maximal required bandwidthB of the input sig-
nal is of particular practical importance. Regularly, the band-
width of a unit pulse is defined to be equal to its inverse dura-
tion in engineering applications [44], hence from the proper-
ties of Wyner’s code we have

B ,

 
M

k

!
1

T
: (25)

In other words, Eq. (25) implicitly defines the effective in-
formation rate Reff.B/, which is achievable with input signal
bandwidth not exceedingB at some fixed error probabilityPe .

3. RESULTS

In the following we evaluate the information rates and ca-
pacities below in bits, using the standard conversion 1 “bit” D
log.2/ “nat”.

First we examine the dependence of the neuron capac-
ity given by Eq. (6) on the metabolic expenditure given by
Eq. (11), more precisely we examine the capacity-cost func-
tionC.W /. We set the peak input firing rate toL D 50Hz and
investigate the effect of the spontaneous activity of four differ-
ent intensities �0 D f0:1; 1; 5; 10gHz. The chosen values are
entirely physiological (note that the output firing rate peaks at
LC�0 Hz) and represent a rather generic situation under var-
ious experimental conditions (e.g., [30, 45, 46]). We do not
consider peak firing rates L > 50Hz in order to guarantee the



4

0 5 10 15 20

0

5

10

15

20

25

Metabolic cost W (109 ATP molecs/s)

In
fo

rm
at

io
n

ca
pa

ci
ty

C
(W

)(
bi

t/s
) a

0 5 10 15 20

0

1

2

3

4

5
1.6 3.8 10 16

Metabolic cost W (109 ATP molecs/s)

In
fo

rm
at

io
n

ef
fic

ie
nc

y
E

(b
it/

10
9

AT
P

m
)

b μ0 = 0.1 Hz
μ0 = 1 Hz
μ0 = 5 Hz
μ0 = 10 Hz

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Metabolic cost W (109 ATP molecs/s)

E
ffe

ct
iv

e
ra

te
R

ef
f(

2)
(b

it/
s)

c

0 5 10 15 20

0

0.05

0.1

0.15

0.2

1.3 3.1 8 13

Metabolic cost W (109 ATP molecs/s)

R
ef

f(
2)
/W

(b
it/

10
9

AT
P

m
)

d

Figure 1. Capacity, efficiency and the effective information transfer rate of the Poisson neuron in dependence on the average (postsynaptic)
metabolic cost W . Four different values of the spontaneous firing rate �0 are examined, the input signal (presynaptic firing intensity) is
restricted to �t 2 Œ0; L� and L D 50Hz. The capacity-cost function (a) exhibits the law of diminishing returns as W grows. The efficiency
C.W /=W (b) shows a pronounced optimum for higher signal-to-noise (SNR) ratiosL=�0. Both the capacity and the efficiency are asymptotic
quantities in terms of coding-decoding delay and complexity. The effective information rate Reff (c) is a non-asymptotic quantity with explicit
coding considerations, i.e., �t bandwidth not exceeding 2 Hz and decoding error probability Pe D 10�5. The maximal Reff is only about 5 %
of the unconstrained capacity value and the benefit of increased SNR between �0 D 1Hz and �0 D 0:1Hz is negligible. The balance between
the metabolic cost and the effective rate (d) also achieves only 5 % of the asymptotic values in (b), in addition, the optima occur for smaller
metabolic cost (vertical lines).

validity of the linear cost model in Eq. (11) [36] and of the
Poissonian approximation to the real neuronal firing activity
[47]. In practice it is possible to determine L and �0 by fit-
ting the hidden Markov model to the given the experimentally
observed neuronal activity, as has been done in [30]. Alter-
natively, one may fit the hidden Markov model to the data by
fixing two firing rates in advance. Here the two firing rates
may be chosen by hand or using other principles.

The respective capacity-cost functions are shown in Fig. 1a.
The metabolic cost W for each �0 spans the whole possible
range of values since the parameter % in Eq. (2) varies con-
tinuously in the interval .0; 1/. The C.W / departs from zero
at the minimum possible cost, Wmin D �0� C ˇ, which cor-
responds to the metabolic cost of the spontaneous firing rate
�0 and the baseline cost, see Eq. (11). The unconstrained
channel capacity is the limit of C.W / as the metabolic cost
is allowed to grow. Under all four spontaneous activity levels
the unconstrained capacity exceeds 10 bit/s. The efficiency E

defined by Eq. (12) balances the information capacity and the
required metabolic expenditure (Fig. 1b). Note that the fac-
tor L=�0 D 1=s essentially describes the signal-to-noise ratio
(SNR) of the Poisson neuron. The capacity in Eq. (6), as a
function of SNR, is proportional to L and hence we may ob-
tain different capacity values for situations with equal SNR.
We see that as the SNR increases, the point of maximal ef-
ficiency E� moves towards lower costs. (At the same time
the cost of 1 bit (equal to 1=E�) decreases, as expected intu-
itively.) The point of maximal efficiency is less pronounced
for low SNR.

An alternative point of view is provided by analyzing the
best possible performance when the metabolic cost is fixed,
W D const: It follows from Eq. (11) that W and the av-
erage postsynaptic firing rate hf i are linearly related due to
hf i D �0 C rL. We therefore maximize the capacity as a
function of s; L along the curve hf i D .s C r/L D const:
(note that r is a function of s). Since L acts only as a scal-
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Figure 2. Effective information rate Reff when the input signal bandwidth does not exceed B under constant % D 0:2, see Eq. (2). As in
Fig. 1c, d it holds L D 50Hz and Pe D 10�5. For small bandwidths the effective rate grows linearly and independently of the SNR (level of
spontaneous activity �0) up to the critical bandwidth B.�0/ (a). The information rate per metabolic cost per allocated bandwidth (b) considers
the three most important aspects of practical information transmission jointly. The rapid drop in Reff=W=B after the critical bandwidth shows
that increasing the transmission rate is not equally easy in terms of practical coding parameters.

ing factor in Eq. (6) it is possible to verify that the solution
to this constrained maximization problem requires s D 0. In
other words, for the given value of hf i, the Poisson neuron
with parameters �0 D 0 and L D hf i=min.%; 1=e/ attains
the largest capacity.

The effective rate for B D 2Hz at Pe D 10�5 is shown in
Fig. 1c. For convenience we neglect thatM and k are integers
and set M D eRT , k D rM together with 

M

k

!
D

� .M C 1/

� .k C 1/� .M � k C 1/
; (26)

where � .x/ is the gamma function [48]. The most strik-
ing difference with respect to Fig. 1a is the significant drop
in information transfer, approximately one order of magni-
tude large. In addition, if the metabolic cost is neglected,
the difference between maximal Reff becomes negligible with
growing SNR, e.g., there is virtually no difference between
�0 D 0:1Hz and �0 D 1Hz. Similarly to Fig. 1b the ra-
tio Reff=W corresponds to the achievable efficiency (Fig. 1d).
The notable difference here, besides the respective values of
the maxima, is that the points of maximal efficiency occur at
lower values of the metabolic cost (shown by vertical lines).

An alternative point of view is provided by fixing the
metabolic cost and varying the maximum allowed input sig-
nal bandwidth. Fig. 2a Although currently do not have enough
information on the biologically valid range of B , we believe
that relatively small values, B < 10Hz, are plausible. shows
such a situation for % D 0:2. The value % D 0:2 was chosen
for illustration only, there is a qualitative correspondence be-
tween the results for different % (not shown). In terms of the
metabolic cost and the capacity we have W D 8:6ATPm/s
and C.W / D 22:6 bit/s for �0 D 0:1Hz, W D 9:2ATPm/s
and C.W / D 19:8 bit/s for �0 D 1Hz, W D 12:0ATPm/s
and C.W / D 14:3 bit/s for �0 D 5Hz, W D 15:6ATPm/s
and C.W / D 11:0 bit/s for �0 D 10Hz. At this value of the

input signal average-to-peak ratio the growth of Reff with B
is initially linear and independent of �0. This trend continues
up to certain critical B (dependent on �0), from which on the
growth of information rate becomes much slower. The ratio
Reff=B=W (Fig. 2b) balances the information rate vs. the al-
located signal bandwidth vs. the incurred metabolic expenses,
although the actual importance of each factor can hardly be
determined unquestionably. Nonetheless the key observation
here is the significant drop in information-transfer capabilities
above the critical bandwidth (which grows with SNR).

Finally, we illustrate behavior of the key Wyner’s code pa-
rameters in dependence on the transmission rate R at band-
width not exceeding B D 2Hz and % D 0:2. The required
coding window T is shown in Fig. 3a. The actual value of
T is analogous to the discrete-time channel code blocklength
and hence the decoding delay and complexity increase with
T [4, 14, 49]. We observe that for a fixed constraint % and
maximal allowed bandwidth B there exists an information
transmission rate R > 0 achieving smallest T . The exis-
tence of such an “optimal” R stems from the condition in
Eq. (22). If the value of Pe was decreased, the minimum of
T would become more pronounced and occur at smaller rates
(not shown). The coding bandwidth in Eq. (25) combines the
coding window duration with the number of time divisions�
M
k

�
. The number of these divisions grows explosively once

the optimal rate in Fig. 3a is crossed (Fig. 3b). Wyner’s coding
waveforms thus approach the capacity achieving input signal
in Eq. (10) rapidly.

4. DISCUSSION AND CONCLUSIONS

In this contribution we have analyzed the information
coding and transmission efficiency of a Poissonian neuron.
We have determined the channel capacity and efficiency
(Fig. 1a, b) and stressed their asymptotic properties and the
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Figure 3. Detailed parameters of Wyner’s code with B � 2Hz and % D 0:2 in dependence on the transmission rate (L D 50Hz and
Pe D 10�5). The required coding window duration T corresponds to the classical discrete-time channel code blocklength. The decoding
complexity and delay grows with T so it is desirable to minimize T for the given rate R and Pe (a). For all investigated SNRs there exists
an information rate with minimal T and this rate increases with the SNR. The coding window Œ0; T � is divided into

�M
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�
sub-intervals. The

number of these bins grows explosively once the optimal information rate (minimal T ) is crossed (b). Consequently, the required bandwidth
of the input signal grows too (Fig. 2a).

impossibility of actually achieving these rates practically. The
focus of our effort is the explicit consideration of decoding er-
ror probability and its influence on the code complexity (band-
width or duration). These considerations might be of crucial
importance for finite-sized, power-constrained and real-time
operating communication systems – such as neurons. To our
best knowledge, though, this part of information (or commu-
nication) theory has not been applied to neuroscience, with
the exception of [14]. We have found that once the bal-
ance between information, metabolic cost and code param-
eters is taken into account, the achievable information rates
drop significantly with respect to their asymptotic counter-
parts (Fig. 1c, d). Similar conclusions were reached in [14]
for the case of a realistic Hodgkin-Huxley neuronal model.
In addition, the progress towards the higher information rates
is accompanied by sudden and rapid increase in certain un-
desirable code parameters (Figs. 2 and 3). The difficulties
associated with crossing the cutoff rate in Eq. (20) are well
known [28, 43]. Here we have demonstrated similar effects at
lower rates with respect to parameters of potential neurobio-
logical importance.

Throughout this paper it has been assumed that the input
signal (the presynaptic firing rate �t ) has a very restricted
form, taking only two possible values. This assumption stems
directly from the mathematical fact that such a signal is op-
timal (asymptotically) for the Poisson communication, and
from the recent analysis of Mochizuki and Shinomoto [30]
of real neuron behavior. However, our methods do not an-
swer the question whether, under certain coding constraints,
a continuously varied �t might be beneficial. In this context,
Kostal and Kobayashi [14] have shown, without imposing the

discreteness constraint on the presynaptic firing rate, that cod-
ing complexity restrictions result in an input with very few
and well separated levels. In addition, the binary input sig-
nal usually near-achieves the information capacity values in
systems with low SNR [13, 50, 51].

Finally, few remarks about the interpretation of our results
are in place. First, the definition of achievable Pe in Eq. (15)
is only approximate for small T . The reason lies in the fact
that unlike the unconstrained Gallager’s bound which holds
for all code lengths [4, Theorem 5.6.2], the power constraint
in Eq. (10) prohibits an equally elegant formulation [4, The-
orem 7.3.2]. On the other hand, the Gallager’s bound is the
upper bound on the smallest possible Pe , so it is entirely pos-
sible that a code with Pe satisfying Eq. (15) exists even for
very small T . Second, the capacity in Eq. (6) cannot be fur-
ther increased by causal feedback, that is, �t may depend on
N� ; � 2 Œ0; t � [34]. The feedback however allows for the ex-
istence of simpler codes at given R < C and Pe , and there-
fore increases the value of the error exponent [52]. The ca-
pacity thus cannot be further increased by a non-Poissonian
neuron, provided that the presynaptic input still satisfies the
constraints in Eq. (1) and (2) and provided that the sponta-
neous activity is Poissonian with intensity �0. For further
capacity-related results on the Poisson channel subject to ad-
ditional constraints see [53–55].
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