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A B S T R A C T   

The rate coding hypothesis is the oldest and still one of the most accepted hypotheses of neural coding. 
Consequently, many approaches have been devised for the firing rate estimation, ranging from simple binning of 
the time axis to advanced statistical methods. Nonetheless the concept of firing rate, while informally under
stood, can be mathematically defined in several distinct ways. These definitions may yield mutually incompatible 
results unless implemented properly. Recently it has been shown that the notions of the instantaneous and the 
classical firing rates can be made compatible, at least in terms of their averages, by carefully discerning the time 
instant at which the neuronal activity is observed. In this paper we revisit the properties of instantaneous 
interspike intervals in order to derive several novel firing rate estimators, which are free of additional as
sumptions or parameters and their temporal resolution is ’locally self-adaptive’. The estimators are simple to 
implement and are numerically efficient even for very large sets of data.   

1. Introduction 

Biological neuronal systems show impressive capabilities of learning, 
decision making or action coordination, by employing the information 
encoded from both the external and the internal environments. Despite 
significant effort of experimental and theoretical neuroscientists the 
exact quantitative mechanism of neuronal coding remains uncertain. 
Generally, neurons communicate by using chemical and electrical syn
apses. The key event that triggers synaptic transmission is the action 
potential (also denoted as spike), which is a pulse of electrical discharge 
traveling along the axonal excitable membrane. The shape (time course 
in time) and duration of individual spikes of any given neuron are 
essentially identical, therefore the whole spike train (series of spikes in 
time) can be described as a sequence all-or-none point events. On the 
other hand, the exact timing of spikes, even under identical external 
conditions, typically varies from trial to trial (Gerstner and Kistler, 2002; 
Shadlen and Newsome, 1998; Stein et al., 2005). 

There are essentially two main hypotheses describing the way in
formation is represented in spike trains (Gerstner and Kistler, 2002; 
Kostal et al., 2007): the temporal and rate (also denoted as frequency) 
coding schemes. According to the rate coding hypothesis, the intensity 
or strength of a stimulus is represented by the average firing rate of 
neurons over a certain period of time. In other words, higher firing rates 
correspond to stronger stimuli or increased activity in a neural circuit, 
while lower firing rates indicate weaker stimuli or reduced activity. The 

rate coding hypothesis is the oldest and still one of the most accepted 
and investigated scenarios in neuronal activity analyses in both theo
retical and experimental works, see, e.g., Dayan and Abbott (2001); 
Adrian (1928); Kandel et al. (1991); Gerstner and Kistler (2002); Lee 
et al. (2023); Kostal and Kobayashi (2019); Abeles (1994); Shinomoto 
(2010); Koyama and Kostal (2014) and references therein. Furthermore, 
the rate coding hypothesis provides a conceptual framework for un
derstanding how populations of neurons collectively encode complex 
stimuli or perform computations. By combining information from mul
tiple neurons with different tuning properties and response character
istics, neural circuits can represent a wide range of sensory inputs and 
perform sophisticated information processing tasks. However, it is 
worth noting that the key terms (firing) rate, mean rate, frequency or 
mean/instantaneous frequency are used differently by different authors, 
depending on the context (Gerstner and Kistler, 2002; Lansky et al., 
2004). 

Elementary observation reveals that even if the firing rates are the 
same, the resulting spike trains can have very different appearances 
(Kostal et al., 2007). The question whether the temporal structure of ISIs 
is due to fluctuations in spike generation (e.g., neuronal noise) or 
whether it represents an informative part of the neuronal signal is not 
yet fully resolved (Shadlen and Newsome, 1994; Stein et al., 2005) and 
leads to the concept of temporal coding (Gerstner and Kistler, 2002; 
Kobayashi and Kitano, 2016). The temporal coding is assumed to be the 
dominant coding scheme in the sustained stationary part of neuronal 
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response (Fuller and Looft, 1984; Middlebrooks et al., 1994). Generally, 
temporal codes employ those features of the spiking activity, that cannot 
be described by the firing rate, in particular the individual lengths of 
interspike inetrvals (ISIs) For a classic overview of temporal coding see 
Perkel and Bullock (1968), for a more recent discussion see Abeles 
(1994); Rieke et al. (1997); Shadlen and Newsome (1994); Stein et al. 
(2005); Theunissen and Miller (1995). It follows that any information 
possibly encoded in the temporal structure of the spike train is ignored 
in the rate coding scheme. Consequently, rate coding is inefficient but 
highly robust with respect to the ISI ’noise’ (Stein et al., 2005; Kostal 
et al., 2007; Kostal and Kobayashi, 2015). 

Accurate neuronal firing rate estimation is therefore a crucial aspect 
of neuroscientific research, involving various computational techniques 
and mathematical models. Traditional methods often involve binning 
spike times into small time intervals and counting the number of spikes 
within each bin to compute firing rates. However, these approaches may 
suffer from biases or inaccuracies, especially when dealing with sparse 
or irregular spike trains (Shinomoto, 2010). To address these challenges, 
researchers have developed advanced statistical methods and signal 
processing techniques, e.g., Bayesian approaches, point process models 
and techniques (Ahmadi et al., 2018; Shimazaki and Shinomoto, 2010; 
Benedetto et al., 2015; Nawrot et al., 1999; Koyama and Shinomoto, 
2004), see e.g., Tomar (2019) for a recent overview. 

The main goal of this paper is to introduce a novel method for firing 
rate estimation which differs substantially from the classical approaches 
mentioned above. Particularly, the reciprocal value of the interval be
tween consecutive spikes — known as the instantaneous firing rate 
(Bessou et al., 1968; Knight, 1972) — is sometimes used as the alter
native to the ’standard’ firing rate. The advantage of the instantaneous 
rate concept lies in the fact that ISI statistics are often more easily 
obtainable than count-based statistics. Although the physical dimension 
of the instantaneous rate is compatible with the firing frequency, the two 
quantities generally yield incompatible results (Lansky et al., 2004). 
However, the recently introduced concept of instantaneous interspike 
intervals (Kostal et al., 2018) statistically corrects the difference between 
the two notions of firing rate. Here we reconsider the instantaneous rate 
as the basis for firing rate estimation and we construct explicit estima
tors which are: i) sufficiently general, applicable to non-stationary sit
uations, ii) computationally very simple to be readily implemented even 
for big datasets, iii) free of additional parameters that would need to be 
optimized over and iv) with locally adaptive temporal resolution 
(meaning that the method can be used for both low- and high-firing 
neuronal regimes). Furthermore, since our method is based on the 
reciprocal value of individual ISIs, it reduces the strict distinction be
tween the temporal and the rate coding schemes. 

The paper is organized as follows. First we briefly review the essential 
concepts of firing rate, instantaneous rate, the estimation methods and 
the Cramér-Rao bound, which allows us to evaluate the estimator effi
ciency. In the results section we derive both the non-parametric and the 
maximum likelihood estimators for few popular statistical models of 
neuronal activity, including for the generalized Poisson process with a 
refractory period. We believe the most practically useful results are 
represented by the explicit and algebraically simple formulas for the 
firing rate estimators as given by Eqs. (42), (49) and (55). Finally, we 
compare the new approach with state-of-art self-adaptive firing rate 
estimation methods (Shimazaki and Shinomoto, 2010; Ahmadi et al., 
2018), and discuss the advantages and the limitations of tour method. 

2. Methods 

2.1. Spike train as a stochastic point process 

Individual spikes in a spike train are usually well separated, but their 
exact timing often varies, apparently randomly, both within and across 
trials. Conveniently, the whole spike train is formally described as a 
series of all-or-none point events in time – the (stochastic) point process 

(Cox and Lewis, 1966; Kass et al., 2005; Moore et al., 1966; Tuckwell, 
1988). In the following we briefly review the key notions of the theory 
which are essential for both the instantaneous and the classical firing 
rate definitions (Kostal et al., 2018). 

Assume the spike times are denoted as 0 < S1 < S2 < …. Generally, 
the time origin, t = 0, is not related to the actual spike times, i.e., it is 
naturally fixed with respect to some reference value (i.e., the ’laboratory 
time’) before the point process realization. The interspike intervals 
(ISIs), Yi, are then defined as (see Fig. 1A). 

Yi = Si+1 − Si, i = 1, 2,… (1)  

The associated process of counts, N(t1, t2), for any two times t2 > t1, is a 
random variable describing the number of spikes in some interval (t1, 
t2]. The spike times Si and the process N(0, t) are equivalently related by 
the formula 

{Si ≤ t} = {N(0, t) ≥ i}, i = 1,2,… (2)  

The expected spike count in (t1, t2] is denoted as E[N(t1, t2)]. The firing 
intensity λ (t) of the spiking process at some time t is defined as the rate of 
change of the mean spike count at this time, 

λ(t) = lim
ε↓0

E[N(t, t + ε)]
ε . (3)  

Note that the probability distribution of N(t, t + ε) generally depends on 
the history (i.e., on the preceding spike times) of the process up to time t, 
hence λ(t) is frequently called the conditional intensity of the point pro
cess. The history dependence can be reduced considerably for simple, e. 
g., renewal, ISI models (see below). 

Often in experiments the limit in Eq. (3) is not available, and the 
firing rate is defined as the number of spikes in a sufficiently long time 
window, w, which is set by the experimenter. Typical values are, e.g., w 
= 100 ms or w = 500 ms, but can be longer or shorter depending on the 
experimental setup and the neuron recorded (Gerstner and Kistler, 2002, 
Ch. 1.5). The (mean) firing rate ν is defined as (Adrian, 1928; Dayan and 
Abbott, 2001), 

ν(t,w) =
E[N(t, t + w)]

w
(4)  

Not much can be said about the relationship between λ(t) and ν(t, w) 
without knowing the exact probabilistic description of the point process. 
Nonetheless, the following statements, frequently explicitly (or implic
itly) implemented in the neuroscientific studies (Braun et al., 2017; 
Doose and Lindner, 2017; D’Onofrio et al., 2018; Peterson and Heil, 
2018; Tamborrino, 2016) hold true:  

1. Assume that the ISI sequence, {Y1, Y2, …}, forms a renewal process, i. 
e., a sequence of independent and identically distributed (i.i.d) 
random variables with probability density function (pdf),  

Y ∼ fY(y), (5)  

and mean ISI denoted as E(Y). The renewal theorem (Cox and Lewis, 
1966) states that  

1
E(Y)

= lim
w→∞

ν(t,w). (6)  

Note that Eq. (6) holds independently of t. In particular, it may 
therefore hold that t = Si or t is chosen randomly, without any 
reference to the point process realization. Moreover, Eq. (6) relates 
the mean firing rate to the mean ISI, and hence justifies the inter
pretation of 1∕E(Y) as the mean firing rate in the steady state (Moore 
et al., 1966; Kostal et al., 2007). 
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2. Since the time origin is chosen without any reference to Si, i.e., 
randomly with respect to the point process realization, the time of 
process observation, t, most likely falls within some particular ISI, 
say Yk, and hence the time to first spike, Sk − t, generally does not 
follow the renewal pdf fY. The sequence of rvs {Sk − t, Yk+1, Yk+2, …} 
is thus not stationary; however, the corresponding stochastic process 
is often denoted as a “steady state” or “equilibrium renewal” process, 
since λ = λ(t) and ν(w) = ν(t, w) do not depend on t anymore. The 
“firing rate/intensity” definitions above coincide and for all w > 0 it 
holds  

λ =
1

E(Y)
= ν(w). (7)   

2.2. Instantaneous interspike intervals and rate 

Eqs. (6) and (7) show how the classical firing rate definitions based 
on spike counts and ISI averages are related to each other in the simple 
case of renewal firing. Consequently, Eq. (7) is potentially useful in 
determining the firing rate in steady-state situations only. 

One of the first methods to deal with firing rate as a function of time 
was based on the concept of instantaneous firing rate (Bessou et al., 
1968; Knight, 1972; Sawczuk et al., 1995; Martinez-Conde et al., 2000; 
Rospars et al., 2003),where the reciprocal values of ISIs are used to 
determine the firing rate (Fig. 1A) 

X =
1
Y
. (8)  

There are several key differences between the classical firing rate and 

Fig. 1. Graphical summary: Neuronal spiking activity as a stochastic point process and firing rate estimation. (A) Neuronal action potentials (spikes) occur at times Si 
which are stochastic in general. The corresponding interspike intervals (ISI) are denoted as Yi and the instantaneous firing rate, Xi, is a piecewise-constant function 
defined by the inverted value of the ISI length (dotted). The associated counting process N(0, t) is needed for the general definition of the firing intensity (rate) λ(t) 
(Eq. (3)). (B) The classical kernel-based firing rate estimation is illustrated for the case of a Gaussian function. Each spike is replaced by a normal probability density 
function of mean zero and a certain variance (given by the binwidth, h, Eq. (16)) and the firing rate estimate is a linear superposition of these Gaussian functions. In 
advanced estimation methods the binwidth is optimized locally to account for as much temporal detail as possible while providing a smoothed-out estimate of the 
firing rate. (C) The firing rate estimation introduced in this paper is based on the instantaneous rate of each individual trial (spike train). The value of the estimated 
firing rate at time t is generally a function of the instantaneous rate of each trial – either a simple average or a more complicated function as detailed in the Results 
section. In any case, the estimate is a piecewise-constant function with a point of change at each spike time. This method to some degree blurs the distinction between 
the rate and temporal coding schemes. 
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the instantaneous firing rate although the physical dimension (units of 
Hertz, or action potentials (spikes) per second) are the same. The most 
important difference is that the expected value of the instantaneous rate 
is higher than the count-based firing rate (Lansky et al., 2004 

E(X) ≥ λ, (9)  

with equality for perfectly regular neuronal firing (pacemaker) only. 
Recently, Kostal et al. (2018) showed that the incompatibility given 

by Eq. (9) is in fact naturally removed by noting that the value of X is 
length-biased. In other words, by observing the value of instantaneous 
rate at a given time t, we tend to observe longer ISIs with higher prob
ability – denoted as the instantaneous ISIs. Consequently, for a renewal 
process of ISIs the value of X at time t follows the pdf, 

X ∼ fX(x) =
λfY(1∕x)

x3 , (10)  

which implies the desired result, 

E(X) = λ. (11)  

See Kostal et al. (2018) for details. 

2.3. Kernel-based firing rate estimation 

Several methods are commonly used to estimate neuronal firing rates 
from recorded neural data. These methods vary in complexity, compu
tational requirements, and assumptions about the underlying neuronal 
processes, see Tomar (2019) for a recent review. 

For the purpose of comparison in this paper we choose the standard 
kernel-based firing rate estimation, which is a non-parametric method 
that estimates firing rate, λ̂(t), by convolving spike trains with a certain 
kernel function, kh(t), 

λ̂(t) =
∑n

i=1
kh(t − si), (12)  

where {si}
N
1 are the time instants of individual spikes (i.e., realizations of 

r.v. Si in Fig. 1A) in a spike train consisting of n spikes. For multiple spike 
trains the λ̂(t) is typically calculated by first pooling individual spike 
trains into a single resulting spike train on which the method for bin
width selection is applied (Shimazaki and Shinomoto, 2010). 

The kernel-based approach provides a smooth estimate of firing rates 
and is less sensitive to the choice of bin size compared to histogram- 
based methods (Shinomoto, 2010). The kernel function typically de
pends on a smoothing parameter (also denoted as bandwidth), h. The 
value of h is either set a priori by the experimenter, or it is optimized in 
more advanced methods (Loftsgaarden and Quesenberry, 1965; Ahmadi 
et al., 2018; Shimazaki and Shinomoto, 2010; Nawrot et al., 1999, either 
globally or locally, in order to capture enough detail in the neuronal 
response. In addition, the kernel function satisfies the natural conditions 
(Nawrot et al., 1999 

kh(t) ≥ 0, (13)  

∫ ∞

− ∞
kh(t) dt = 1, (14)  

∫ ∞

− ∞
tkh(t) dt = 0. (15)  

For sufficiently dense spike trains the particular choice of kernel is of 
lesser importance than the bandwidth (Nawrot et al., 1999 and usually 
the Gaussian function is chosen (Fig. 1B), 

kh(t) =
1
̅̅̅̅̅̅
2π

√
h(t)

exp

(

−
t2

2h(t)2

)

. (16)  

Here we explicitly denote the possibility of bandwidth dependence on 
time. 

In this paper, for the sake of comparison, we employ the (locally) 
optimized, i.e., time-dependent h(t), according to the two following 
approaches:  

i) Method of Shimazaki and Shinomoto (2010): building upon the 
technique they proposed before (Shimazaki and Shinomoto, 2007, 
the authors calculate the optimized bandwidth by minimizing a cost 
function involving the mean integrated square error (MISE) between 
the estimated rate and the unknown underlying rate. For the 
locally-optimal bandwidth the method divides the trial duration into 
local sub-intervals where the variable bandwidth is used. A local 
MISE function a is implemented in the local cost function to find the 
optimal bandwidth in the time window. There is an additional 
parameter to trade off the smoothness factor between the window 
length and optimal bandwidth. The resulting algorithm is compu
tationally quite demanding for large datasets. The authors compare 
the fixed and variable kernel methods to the other established 
methods with sample spike data and confirm that the variable kernel 
estimation is more efficient in capturing the abrupt changes in the 
rate.  

ii) Bayesian adaptive kernel smoothing (BAKS): Ahmadi et al. (2018) 
employ simulated spike trains described by inhomogeneous Gamma 
and inhomogeneous inverse Gaussian processes to represent 
non-stationary neuronal firing. BAKS uses the kernel smoothing 
technique with adaptive bandwidth at the estimation points. The 
adaptive bandwidth is a random variable with prior distribution 
which is updated under a Bayesian framework given the spiking 
data. For the purpose of derivation, since the ISIs are modeled by 
Gamma distribution, the authors propose Gamma prior distribution 
on the precision parameter, which can be transformed into the var
iable bandwidth, and results into an analytical expression for the 
posterior. Consequently a closed-form expression for the bandwidth, 
in dependence on the spike times, is given. The authors compare 
BAKS to optimized kernel smoothing, variable kernel smoothing 
other estimation approaches. They report that BAKS compares 
favorably in terms of mean squared integrated error when tested on 
differing number of trials and different underlying rate functions. 
The advantage of BAKS, as opposed to the other Bayesian methods, is 
its lower computational complexity, and also when compared to 
Shimazaki and Shinomoto (2010). 

For further details on the methods and their implementation see 
Shimazaki and Shinomoto (2010); Ahmadi et al. (2018). 

2.4. Cramér-Rao bound 

The Eq. (11) binds the mean of the instantaneous firing rate to the 
firing rate, λ, of the renewal ISI process. It is natural then to ask how well 
can we estimate the true value of λ from the observed value X = x. 

The problem of estimation precision, i.e., the evaluation of the 
smallest achievable error, is generally non-trivial (van Trees and Bell, 
2013; Kostal et al., 2015. Instead, it is often more practical to evaluate 
the Cramér-Rao lower bound on the mean square error (MSE), of the 
estimator λ̂, 

MSE(λ̂) = E
[
(λ̂ − λ)2

]
. (17)  

Under mild regularity conditions (Ibragimov and Has’minskii, 1981; 
Pilarski and Pokora, 2015, the Cramér-Rao bound states that the MSE of 
any estimator λ̂ satisfies 

MSE(λ̂) ≥
1

nJ(λ)
, (18) 
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where n is the number of observations (sample size) used to evaluate λ̂. 
The function J(λ) is the Fisher information, 

J(λ) =
∫ (∂ log fX(x; λ)

∂λ

)2

fX(x; λ)dr, (19)  

where we explicitly denote the dependence of the p.d.f. of X on the firing 
rate λ, see Eq. (10). 

The estimator efficiency, ε(λ̂), is evaluated by using the Cramér-Rao 
bound from Eq. (18), i.e., by examining the ratio of the reciprocal value 
of the Fisher information against MSE in the limit of increasing n – thus 
often denoted as the asymptotic efficiency. More precisely, 

ε(λ̂m) =
1

J(λ)
1

lim
n→∞

nMSE(λ̂)
, (20)  

and it generally holds ε(λ̂m) ≤ 1. If the ratio equals 1 then the estimator 
is efficient in the ultimate sense of the Cramér-Rao bound (van der Vaart, 
2000. 

2.5. Renewal ISI models 

In this section we briefly summarize several standard models of 
renewal neuronal firing which are completely described by their pdf of 
ISIs. In the results section we employ the form of fY(y; λ) in conjunction 
with Eq. (10) in order to derive maximum likelihood estimator of λ and 
to judge its (asymptotic) efficiency by means of Fisher information, Eq. 
(19). 

2.5.1. Poisson neuron 
The response spike-count distribution in many neurons is reported to 

be close to Poisson (Teich and Khanna, 1985; Winslow and Sachs, 1988; 
Tuckwell, 1988, especially if the firing intensity is approximately below 
40 spikes/s (Javel and Viemeister, 2000. Above that level the effect of 
maximum physiological firing rate (i.e., the refractory period – see 
below) becomes apparent. In the renewal, homogeneous case, the pdf of 
ISIs is given by the exponential, 

fY(y; λ) = λe− λy. (21)  

2.5.2. Poisson-like neuron with an absolute refractory period 
The absolute refractory period is the time interval after every spike 

during which it is impossible for another spike to be emitted (Gerstner 
and Kistler, 2002; Tuckwell, 1988. The exponential pdf in Eq. (21) can 
be modified to account for the refractory period τ > 0 as 

fY(y; λ) =
{

a(λ)e− a(λ)(y− τ), if y > τ,
0, elsewhere ,

(22)  

a(λ) =
λ

1 − λτ, λ < 1∕τ. (23)  

As λ → 1∕τ the firing is described by a perfect pacemaker. 

2.5.3. Gamma distribution 
Due to its flexibility in shape, which accounts for all possible values 

of the ISI coefficient of variation CV, and due to its close relationship to 
the exponential pdf (Poisson process), the gamma pdf is one of the most 
frequent statistical descriptors of ISIs employed in both experimental 
data analysis and theoretical considerations (Levine, 1991; McKeegan, 
2002; Rajdl and Kostal, 2023; Rajdl et al., 2017; Ahmadi et al., 2018. 
The pdf parameterized by the ISI CV is 

fY(y; λ) =

(
λ

C2
V

)1∕C2
V

Γ(1∕C2
V) y1∕C2

V − 1exp

(

−
λy
C2

V

)

, (24)  

where CV = λ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Y)

√
and Γ(z) =

∫∞
0 tz− 1exp( − t)dt is the gamma 

function (Abramowitz and Stegun, 1965. 

2.5.4. Inverse Gaussian distribution 
The renewal ISIs of the stochastic variant of the perfect integrate- 

and-fire neuronal model is described by the inverse Gaussian (Lansky 
and Sato, 1999; Tuckwell, 1988. In addition, the distribution is often 
fitted to experimental data as well (Berger et al., 1990; Gerstein and 
Mandelbrot, 1964; Levine, 1991; Pouzat and Chaffiol, 2009. The pdf can 
be expressed in terms of ISI CV as (Kostal and Lansky, 2007 

fY(y; λ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

2πλC2
Vy3

√

exp

[

−
λ

2C2
V

(y − 1∕λ)2

y

]

. (25)  

2.5.5. The lognormal distribution 
With a handful of exceptions Bershadskii et al. (2001), lognormal pdf 

of ISIs is rarely presented as a result of a neuronal model. However, it 
represents quite a common descriptor in experimental data analysis 
Levine (1991); Pouzat and Chaffiol (2009). The pdf can be expressed as 
(Kostal and Lansky, 2007 

fY(y; λ) =
1

y
̅̅̅̅̅̅̅̅
2πβ

√ exp

{

−
1
8
[β + 2log(yλ)]2

β

}

, (26)  

β = log(1 + C2
V). (27)  

3. Results 

Our main aim is to use Eq. (10) to derive the estimator of the firing 
rate λ. While Eq. (10) holds for the renewal case, in the strict sense, it is 
necessary to keep in mind that the value of instantaneous rate X, at time 
t, is given only by the ISI that contains the time t (see Fig. 1A, C and 
Kostal et al. 2018). The estimators derived below are therefore directly 
applicable to situations in which the instantaneous rate ’around’ the 
time t follows the pdf fX(x). I.e., the proposed estimators are naturally 
applicable also to inhomogeneous, time-dependent cases as well. The 
proposed estimators, λ̂(t), are generally piecewise-constant functions 
with points of change occurring at spike times. Consequently, λ̂(t) be
haves as a locally-adaptive ’bandwidth’ estimator (using the 
kernel-based estimator terminology), where higher firing rates result in 
more temporal detail due to the accumulation of points of change 
(Fig. 1C). 

3.1. Moment estimation of firing rate from the instantaneous rate 

The Eq. (11) allows immediate estimation of the firing rate λ from a 
sample of of instantaneous rate values, independently from the partic
ular ISI renewal model, fY. 

Assume we have n trials (see Fig. 1C) so that at the time t we observe 
n instantaneous rate samples, {x1, x2, …, xn}. The moment estimator λ̂m 
of λ is simply the average, 

λ̂m =
1
n
∑n

i=1
xi (28)  

The estimator can be viewed as a function of i.i.d. random variables Xi 
and therefore is a random variable itself. 

In order to analyze the MSE of λ̂m, given by Eq. (17), we first note 
that the following relationship holds between the moments of instan
taneous rate, X, and the interspike intervals, Y, 

Var(X) = E(X2) − E(X)2
=

E(1∕Y)
E(Y)

−
1

E(Y)2, (29)  

which follows from Eq. (10) and due to Eq. (7) we have λ = 1∕E(Y). The 
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behavior of Var(X) thus critically depends on E(1∕Y), which was also 
analyzed in Lansky et al. (2004). Due to Eqs. (11) and (28) the moment 
estimator is generally unbiased for all values of n, 

E(λ̂m) = λ, (30)  

while the MSE decreases with n as 

MSE(λ̂m) =
λE(1∕Y) − λ2

n
. (31) 

The Fisher information given by Eq. (19) has already been evaluated 
in Kostal et al. (2018) in a closed form for the ISI renewal models fY(y; λ) 
presented above. In particular, for the Poisson neuronal model we have 
E(1∕Y) = ∞ and J(λ) = 2∕λ2, which makes the moment estimator not 
only inefficient, ε(λ̂m) = 0, but also not applicable in classical statistical 
scenarios. Once the refractory period is present, E(1∕Y) becomes finite 
(Lansky et al., 2004, however it still holds ε(λ̂m) < 1 (calculation is very 
tedious and hence omitted). For the gamma pdf we have by the direct 
calculation of Var(X) and from Kostal et al. (2018), 

J(λ) =
1 + C2

V

λ2 , (32)  

MSE(λ̂m) =
1
n

C2
Vλ2

1 − C2
V
, for CV < 1, (33)  

therefore the estimator monotonically approaches the efficient regime, 
ε(λ̂m) = 1, as CV → 0. For both the inverse Gaussian and lognormal ISI 
renewal models we have lim

n→∞
nMSE(λ̂m) = C2

Vλ2, while J(λ) = (2 + C2
V)∕ 

(2C2
Vλ2) for the inverse Gaussian, and J(λ) = 1∕(βλ2) for the lognormal. 

The estimators are thus not efficient. 

3.2. Maximum-likelihood estimation of firing rate from the instantaneous 
rate 

The moment estimator in Eq. (28) does not require the exact 
knowledge of fX(x), nonetheless the simplicity is counterbalanced by its 
inefficiency. On the other hand, the maximum-likelihood (ML) esti
mator, λ̂ML, 

λ̂ML = argmax
λ

∑n

i=1
logfX(xi; λ), (34)  

is asymptotically efficient, under mild technical assumptions (van der 
Vaart, 2000, which are satisfied in the context of this paper. See Pilarski 
and Pokora (2015) for a review of the conditions in the computational 
neuroscience context. 

As the Eq. (34) suggests, it is difficult to obtain a closed-form 
expression for the estimator λ̂ML, its mean and variance, or even its 
entire pdf for the renewal firing models of interest. Nonetheless, at least 
for the Poisson and gamma model it is possible to obtain the complete 
statistics of λ̂ML, and also to derive a closed-form expression for the ML 
estimator for the Poisson neuron with refractory period. 

3.2.1. Poisson neuron 
First, we introduce the auxiliary random variable Z = 1∕X, which is 

gamma-distributed with E(Z) = 2∕λ, as follows from the standard 
transformation rule for probability density functions and (Papoulis, 
1991 and Eq. (10), 

Z ∼ λ2ze− λz. (35)  

The sample mean divided by two, 
∑

izi∕(2n), is therefore the ML esti
mator of the mean ISI, E(Y) = 1∕λ, furthermore it is also unbiased and 
efficient (Lehmann and Casella, 1998. Due to the invariance property of 
the ML estimator (Lehmann and Casella, 1998, p. 444) it holds 

λ̂ML =

(
1
2n
∑n

i=1

1
xi

)− 1

. (36)  

Second, the sum V =
∑n

i=11∕Xi follows the gamma pdf, γ(v; 2n, λ), 

γ(x;α, β) = βα

Γ(α)x
α− 1e− βx, (37)  

with the shape parameter equal to 2n and the rate parameter equal to λ 
due to the summation property of i.i.d. gamma-distributed random 
variables with equal rate parameter (Johnson et al., 1994. Applying the 
transformation ̂λML = (2nV)− 1 on V ~ γ(v; 2n, λ) yields the complete pdf 
of the ML estimator, 

λ̂ML ∼
(2nλ)2n

Γ(2n)
(λ̂ML)

− 2n− 1exp
(

−
2nλ
λ̂ML

)

, (38)  

from which it follows 

E(λ̂ML) = λ
2n

2n − 1
, (39)  

Var(λ̂ML) =
(2nλ)2

(2n − 1)2
(2n − 2)

, n ≥ 2, (40)  

and hence 

MSE(λ̂ML) = Var(λ̂ML) + [E(λ̂ML) − λ]2

=
(1 + n)λ2

(n − 1)(2n − 1)
.

(41)  

Note that although the ML estimator is biased, E(λ̂ML) ∕= λ, the bias de
pends only on n and not on λ, so it is possible to un-bias the ML estimator 
and also to reduce its MSE by considering 

λ̂MLU =

(
1

2n − 1
∑n

i=1

1
ri

)− 1

, (42)  

which yields 

E(λ̂MLU) = λ, (43)  

MSE(λ̂MLU) =
λ2

2n − 2
, n ≥ 2. (44)  

The unbiased ML estimator is asymptotically efficient, since 
lim
n→∞

nMSE(λ̂MLU) = 1∕J(λ) = λ2∕2. 

3.2.2. Gamma distribution of ISIs 
It is possible to extend the derivation of Eq. (42) to the case of ISIs 

following the gamma pdf in Eq. (24). Then Eq. (42) is a special case for 
CV = 1. 

Let the ISI pdf of Y be rewritten as fY(y) = γ(y;C− 2
V , λC− 2

V ) as in Eq. 
(37), since for γ(z; α, β) it holds E(Z) = α∕β and CV = 1∕

̅̅̅
α

√
. Therefore for 

the auxillary variable Z = 1∕X it holds 

Z ∼ γ(z;1 + C− 2
V , λC− 2

V ), (45)  

due to Eq. (10) and the pdf transformation rule (Papoulis, 1991, and 
hence E(Z) = (1+ C2

V)∕λ. The rest of the argument is the same as above. 
Namely, 

∑
izi∕(αn), where α = 1+ C− 2

V , is the ML estimator of C2
V∕λ, i.e., 

∑
izi∕[(1 + C2

V)n] is the ML estimator of 1∕λ, and therefore 

λ̂ML = n(1 + C2
V)

(
∑n

i=1

1
xi

)− 1

(46) 

L. Kostal and K. Kovacova                                                                                                                                                                                                                    



Neuroscience Research 215 (2025) 27–36

33

is the ML estimator of λ. 
The sum V =

∑n
i=11∕Xi follows the gamma distribution, 

γ
(
v; n(1 + C− 2

V ), λC− 2
V
)
, hence the transformation λ̂ML =

(
n(1 + C2

V)V
)− 1 

applied to V yields the inverted gamma pdf (Witkovsky, 2001, 
λ̂ML ∼ γinv

(
λ̂ML; n(1 + C− 2

V ), nλ(1 + C− 2
V )
)
, where 

γinv(x;α, β) =
βα

Γ(α)x
− α− 1e− β∕x. (47)  

The mean of the estimator is biased, 

E(λ̂ML) = λ
(1 + C2

V)n
(n − 1)C2

V + n
. (48)  

The bias correction is possible and for the un-biased ML estimator we 
have (for n≥2), 

λ̂MLU =
(
(n − 1)C2

V + n
)
(
∑n

i=1

1
xi

)− 1

, (49)  

E(λ̂MLU) = λ, (50)  

MSE(λ̂MLU) =
C2

Vλ2

(n − 2)C2
V + n

. (51)  

It is worth noting that MSE(λ̂MLU) < MSE(λ̂ML) for all n≥2, and that 
lim
n→∞

nMSE(λ̂MLU) also equals 1∕J(λ), hence Eq. (49) is indeed the 

asymptotically efficient estimator of λ for all values of CV. Also note that 
for n = 1 the estimator does not depend on CV, and just equals x1, as 
expected. 

3.2.3. Mismatched estimation 
It is possible to derive the mean and MSE of the mismatched esti

mation (van der Vaart, 2000, that is when λ̂MLU from Eq. (42) uses ob
servations xi resulting from the gamma ISI p.d.f. in Eq. (24). Such 
estimation is mismatched for all CV ∕= 1. The p.d.f. of the mismatched 
estimator follows γinv

(
λ̂MLU; n(1 + C2

V), nλ(1 + C− 2
V )
)
, and thus 

E(λ̂MLU) = λ
2n − 1

C2
V(n − 1) + n

. (52)  

It holds lim
n→∞

Var(λ̂MLU) = 0, and, asymptotically, the mismatched esti

mator is biased, 

lim
n→∞

E(λ̂MLU) − λ = λ
1 − C2

V

1 + C2
V
. (53)  

3.2.4. Poisson neuron with a refractory period 
The presence of refractory period τ > 0 in Eq. (22) makes it impos

sible to apply the method of transformations, which we employed to 
derive Eqs. (42) and (49). In fact, it seems analytically intractable to 
obtain the full pdf of the ML estimator in this case, however, it is possible 
to obtain a simple closed-form expression for the estimator itself. In 
order to derive the expression we substitute Eq. (22) directly into Eq. 
(34), and set the derivative of the log-likelihood function, ℓ(λ) =
∑n

i=1logfX(xi; λ), equal to zero in order to find the maximum. 
The derivative of the log-likelihood function can be manipulated into 

the form 

dℓ(λ)
dλ

=

(

n +
n − nλμ
(λτ − 1)2

)
1
λ
, (54)  

where μ =
∑n

i=1(nxi)
− 1. Equating the expression in Eq. (54) to zero 

yields the solution 

λ̂ML =
μ + 2τ −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ2 + 4μτ − 4τ2

√

2τ2 . (55)  

Due to the presence of the square root in Eq. (55) it is not possible to 
obtain the ML estimator mean and the MSE analytically. 

3.3. Estimation of firing rate from simulated spike trains 

Finally, we compare the newly derived estimators with state-of-art 
self-adaptive firing rate estimation methods by using simulated spike 
trains. In order to make the comparison of the proposed and traditional 
approaches both ’manageable’ and comprehensible, we have to limit 
ourselves in the choice of the following categories: i) the neuronal firing 
models, ii) the classical firing rate estimators and iii) the newly proposed 
estimators. 

i) Experimentally recorded neuronal firing is often well approxi
mated by the Poisson process with refractory period (Abeles, 
1982; Deneve, 2008; Teich and Khanna, 1985; Winslow and 
Sachs, 1988; Javel and Viemeister, 2000. Therefore we simulate 
neuronal activity as an inhomogeneous generalized Poisson 
process with firing intensity λ(t) and refractory period τ. I.e., we 
use Eq. (23) to simulate a classical inhomogeneous Poisson pro
cess with the rescaled rate, a[λ(t)], and then thin the resulting 
spike train with the refractory period. We employ the following 
three distinct time courses of λ(t), The refractory period is set to τ 
= 3 ms in all cases:  
(a) constant (Fig. 2A), λ(t) = 30 Hz steady-state firing rate,  
(b) aperiodic (Fig. 2B), progressively decreasing ’periodicity’ as 

λ(t) = (cos[3cos(2et∕5)] + 1)× 100 Hz, to demonstrate the 
performance with slow-rapid but smooth firing rate changes, 
similar to the ’chirp’ signal (Ahmadi et al., 2018,  

(c) fluctuating (Fig. 2C), mimicking the rapid discontinuous 
changes of firing rate as observed, e.g., in the insect olfactory 
receptory neurons (Levakova et al., 2018,2019.  

ii) For the sake of estimator performance analysis we choose the 
adaptive approaches, as detailed in the Methods section (Fig. 2),  
(a) Gauss. opt.: by Shimazaki and Shinomoto (2010),  
(b) BAKS: by Ahmadi et al. (2018).  

iii) We believe that especially Eq. (55), despite lacking the detailed 
mean and MSE analysis, has a potential for practical utilization 
and therefore we choose it for the comparison. While the re
fractory period is known for the simulation purposes, we estimate 
it from the data as  

τ̂ = min{si}, (56)  

where {si} is the set of all ISIs in the data (e.g., in every spike train 
and every trial). We note that more advanced and unbiased sta
tistical methods for the refractory period estimation exist in the 
literature (Hampel and Lansky, 2008, however, Eq. (56) is 
entirely sufficient for the testing purposes. This estimator is 
denoted as ’Inst. ISI’ in Figs. 2 and Figs. 3. Furthermore, we note 
our λ̂(t) can itself be used to determine the locally adaptive 
Gaussian kernel bandwidth (Eq. (16)),  

h(t) =
c

λ̂(t)
, (57)  

where λ̂(t) is given, e.g., by Eq. (55) and c is a suitable constant. 
We did not optimize for c and set it by hand to c = 1∕2 instead. 
This estimator is denoted as ’Inst. ISI: local’ in Fig. 3. 

The relative (i.e., divided by the ’average’ λ(t) squared) mean 
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integrated square error (MISE) is selected as the performance indicator 
and evaluated numerically (Fig. 3), 

MISE
〈λ(t)〉2 =

∫
[λ̂(t) − λ(t)]2dt
[ ∫

λ(t)dt
]2 . (58)  

4. Discussion and conclusions 

Fig. 2 shows the firing rate estimators, under the conditions 
described above, for 15 simulated spike trains of duration 5 s each. We 
see that the instantaneous firing rate estimator based on Eq. (55) tends 
to capture the rapid firing rate fluctuations better than the optimized 

Fig. 2. Comparison of firing rate estimators for simulated sets (trials) of 15 spike trains of duration 5 s. The spike trains follow the (inhomogeneous) Poisson process 
with refractory period τ = 3 ms. Three firing rate functions λ(t) are considered to cover distinct situations: (A) constant, 30 Hz steady-state firing rate, (B) aperiodic, to 
demonstrate the performance with slow-rapid but smooth firing rate changes, (C) fluctuating, mimicking the sudden discontinuous changes in firing rate (observed, e. 
g., in the insect olfactory receptory neurons). The respective spike trains are shown in the bottom panels. Two standard Gaussian kernel-based techniques (Gauss. opt. 
based on the adaptive estimator by Shimazaki and Shinomoto 2010 and the locally adaptive Bayesian BAKS by Ahmadi et al. 2018) are shown in comparison with the 
novel estimator Inst. ISI based on Eq. (55). Unlike the two considered Gaussian estimators, the instantaneous firing rate estimator tends to capture rapid firing rate 
increase better (perhaps even overestimating it). On the other hand it is also more ’noisy’ and does not follow the low-firing periods, especially in (C), too precisely 
(see the Discussion and Conclusions). 

Fig. 3. Comparison of firing rate estimators for the three distinct cases of firing rate functions, λ(t), shown in Fig Fig 2: the aperiodic (Fig Fig 2B), the constant (Fig Fig 
2A) and the fluctuating (Fig Fig 2C). The comparison shows the relative MISE (Eq. (58)) in dependence on the number of parallelly simulated spike trains (Fig. 1C). The 
estimation methods correspond to Fig Fig 2, with the addition of the ’Inst. ISI: local’ method, whereby the reciprocal value of λ̂MLU is used to determine the locally- 
adaptive Gaussian kernel bandwidth (Eq. (57)). The results are based on 200 repetitions. In most cases we observe the superior performance of the method proposed 
by Shimazaki and Shinomoto (2010) though the computational cost is an issue. There are exceptions in terms of both the sample size and the λ(t) shape. It is not 
suprising that with an increasing sample size the Eq. (55) (Inst. ISI) overperfomrs the other methods due to its maximum-likelihood derivation. In the case of a rapidly 
fluctuating firing rate Eq. (57) seems to be superior to the other approaches – unlike the case of the constant λ (t). 
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kernel-based estimators. On the other hand it is also more noisy and does 
not follow the low-firing periods precisely, especially in Fig. 2C. The 
explanation lies in the fact that although we formally require λ(t) > 0 at 
all times (Daley and Vere-Jones, 2002, the largest instantaneous ISI is 
determined by the time interval between two spikes. In other words, in 
the inhomogeneous situation, whenever we have a high-intensity firing 
separated by a short gap of low firing (almost zero intensity), the value 
of X is effectively lower-bounded by the ’gap’ duration. This observation 
leads us to propose Eq. (57) Fig. 3 

compares the firing rate estimators for the three distinct cases of 
firing rate functions. The comparison shows the relative MISE given by 
(Eq. (58)) in dependence on the number of simulated spike trains 
(Fig. 1C). The state-of-art method proposed by Shimazaki and Shino
moto (2010) provides very good results, however, the computational 
cost is an issue – the locally-adaptive approach is a nested optimization 
problem (Shimazaki and Shinomoto, 2010, making its implementation 
numerically prohibitive for large data sets. It is not suprising that with 
an increasing sample size the Eq. (55) (Inst. ISI) overperfomrs the other 
methods due to its maximum-likelihood derivation. On the other hand, 
Eq. (57) seems to be superior to the other approaches in case of a rapidly 
fluctuating driving intensity – and its computational cost is negligible. 

We conclude the paper with the following observations:  

i) The moment estimators based on the instantaneous rate are not 
efficient and perform rather poorly with increasing CV. Such 
behavior can be expected intuitively, as spike bursts can influence 
λ̂ significantly.  

ii) The newly derived estimators in Eqs. (42), (49) and (55) are 
computationally very simple to apply, even for very large data
sets, and free of additional parameters which would require 
further optimization.  

iii) The estimators in Eqs. (42), (49) and (55) are essentially ‘locally 
adaptive’ or ‘local’, i.e., the time scale on which the estimated 
intensity changes is given by the ISIs themselves (see Fig. 1C). 
The higher the firing rate – the more detail. Typically, the 
advanced adaptive estimation methods require whole spike trains 
to be known first (in order to optimize the bandwidth), the new 
estimator adapts ’on-line’, may be applied to any small segment 
of the whole record.  

iv) The ISIs from individual trials are generally not pooled (as 
compared with classical kernel-based estimators).  

v) The algebraic simplicity of Eq. (55) makes it a good candidate for 
the universal estimator of λ(t) even in situations when the like
lihood function is not known exactly or when solving Eq. (34) is 
intractable. This is further supported by the fact that neuronal 
firing is often close to the Poissonian regime. 
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