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Neuronal signal and “code”

> Action potential (AP, spike): activates synaptic transmission
» AP shape: constant for each individual neuron
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Neuronal signal and “code”
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> Action potential (AP, spike): activates synaptic transmission
» AP shape: constant for each individual neuron
> AP is a point event in time
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Frequency vs. temporal coding
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Frequency vs. temporal coding
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Frequency vs. temporal coding

Firing fregency

N8

Stimulus

1. Frequency: Adrian (1926), number of APs per unit time
(suitably chosen)

2. Temporal: intervals between AP matter (see: “leaky” neurons)

» 1. and 2. are not mutually exclusive (Perkel & Bullock, 1968),
variability (Stein et al., Nat. Rev. Neurosci. 2005)
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Comparing patterns of neuronal activity

» Spike train: series of APs in time
» “Variability” both within and across trials: unpredictability

S |

| | | |
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[ | | time
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» Methods that compare spike trains are important for
characterizing different neuronal coding schemes

» E.g., stationary neural firing: differences beyond the mean firing
rate (frequency coding) may characterize the temporal code
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Assumptions

ISI: ti = tj41 — 7;

| | time [s]
Tj—1 Tj Tj+41 Tji+2

» Neuronal firing under steady-state conditions is often described
as a renewal process of interspike intervals (ISIs) t;

» |Sls are then independent realizations of a positive continuous
random variable T

» Spike train is fully described by the probability density function
(p-d.f.) f(t) (statistical vs. biophysical models)

» Extension under stationarity conditions: f(t;, tp,...)



Example spike trains (simulated)

v Var(T)/E(T)

» Different spiking patterns, E(T) = 1, ¢,

A. Poisson, ¢, =1

B. Regular, ¢,=0

C. Overdispersed, c¢,=2

D. Two-valued, ¢ =1

=0.86

E. Correlated, c =1, p
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Kostal et al., Eur. J. Neurosci, 2007
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Motivation

v

Observation: patterns of neuronal activity can be very different
even if E(T) (mean ISI) is fixed

v

How to describe the differences "beyond" E(T)?
(Note that: #APs/A =1/E(T))

v

Variability (classical): variance or coefficient of variation
Var(T) o« E(T)%* (Koyama, 2015; Koyama & Kobayashi, 2016)

v

Shinomoto et al., 2003: local variability
(Aoki, Takaguchi, Kobayashi and Lambiotte, 2016)

i 1 (fi—ti+1)2
pu —1 (ti+l‘i+1)2




Statistical dispersion

» Classical dispersion measures in statistics:
standard deviation, inter-quartile range, mean difference, . ..

» Relative statistical dispersion coefficients: normalized to the
mean value

» Variability: ¢, = o/u

» Other global and intuitive characteristics?

» Randomness or predictability: entropy-based
» Smoothness, modes, ... of the ISI density

» Goal: propose the corresponding relative dispersion coefficients



“Variability”, ¢,

» Coefficient of variation, ¢,

v/ Var(T)

E(T)

v p—
» 0 < ¢, < 00 No unique ¢,-maximizing f(f)
» ¢, = 0 for regular firing

» ¢, = 1 for f(t) exponential (=Poisson process),
but also for other models . ..

» Poisson process is the most random model (by construction),
hence ¢, does not measure randomness
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“Randomness”, ¢,

» Shannon’s entropy (discrete r.v. X, p; = Pr(X = x;))

H(X) =—Y pilog,p; (bi)

v

Differential entropy of r.v. T ~ f(t),t € T:

h(T) = _/Tf(t) log f(t) dt

v

h(T) not directly usable (may be negative, ...)

v

Propose the entropy-based dispersion as

h(T)

op=2~¢€ op>0
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“Randomness”, ¢,

» Inspired by the Asymptotic Equipartition Property:
Almost any sequence of n realizations of the r.v. T comes from a
set At in the n-dimensional space of all possible outcomes, and
Vol Ar ~ exp[nh(T)] = o}.

» The dispersion coefficient (¢, analogy)

i — e1_DKL[f ” fexp]’ Ch > 0

= Em

> max cp = e iff f(t) is exponential, note ¢, = 1
> ¢, measures the overall “spread” of f(t), “randomness”

“Variability” # “Randomness”
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Maximum ¢y given ¢,

» Maximum entropy distribution given E(T) and E(T?):

1

v

Euler-Lagrange: fmax(f) = N(i,02)/ [ N(, 02) dt:

i fZpem (] 45

Only for ¢, < 1!

v

» For c, = 1: fnax is exponential, for ¢, > 1: unique fyax does not
exist ("perturbed" exponential: ¢, — 1)
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“Smoothness”, ¢,

» “Shape” of f(t): translational parameter 6 € R: f(t) — f(t—0)
Sensitivity: Var(é) > 1/J(T) where

v

o0

_ [Tamf®7]?
J(T)_/[ 5 } f(t) dt
0

v

Fisher information-based dispersion coefficient, ¢,

1

¢y = 1 for f(t) exponential

v

v

Any locally steep slope or the presence of modes in the shape of
f(t) decreases ¢,
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Maximal ¢,

v

Version of regularity conditions: f(t) € C' for allt > 0 and
f(0) = f(0) = 0,als0 0 < J(T) < c©

Define the probability amplitude (real)

v

ult)y = Vitt) = J(T)=4/ v (12 dt
T

v

Euler-Lagrange s.t. [ u(t)?dt = 1 and [ u(t)?tdt = E(T)

U'(t) = (A1 — Aatyu(t) = (1) < AP (c1 + co/ E(T))

v

max ¢y = 1.26: f(t) based on the Airy function
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Distributions maximizing ¢, and ¢, given E(T) = 1

Probability density function, f(t)
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—— maxcy: f/(0)=0
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ISl length, t
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Properties of the proposed measures

p.d.f. f(t)

cy: local behaviour — sensitive to
modes, smoothness, slopes

cy: central tendency — sensi-
tive to spread from (T)

84

>

cnh: global behaviour — sensitive to
overall spread, evenness
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Statistical ISI models

» Common two-parametric, for convenience f(t; E(T) = 1, ¢,)
» Both ¢y, ¢y can be found analytically

Gamma p.d.f.

» ¢y exists for 0 < ¢, < 1/+4/2and for ¢, = 1

Log-normal p.d.f.

» For ¢, = 1 itis not exponential (c, < 1)

Inverse Gaussian p.d.f.

» “Similar” to log-normal
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Dispersion coefficients for some typical ISI models

entropy-based coefficient, ¢,
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Dispersion coefficients for some typical ISI models

Fisher-based coefficient, ¢
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Example: log-normal mixture

v

Mixture models: wide applicability, including statistical ISI models
Consider mixture of normals

v

gm(X) = p¢(X, my, 31) + (1 - p)¢(Xs mo, 32)

v

T = exp X: log-normal mixture ~ I1SI model

v

“Variability # Randomness”

v

“Smoothness # Randomness”
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Log-normal mixture (sensitivity of ¢, to modes)

Entropy-based dispersion, cx

Entropy-based dispersion, ¢
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Increasing the weight p € [0, 1]

Fl-based dispersion, ¢y
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Increasing the mean of one component
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Non-parametric estimation of ¢,, ¢y, Cy

» ¢, = 6/[1 may be problematic (Ditlevsen & Lansky, 2011)

» Estimate ¢y withoutf/(t\): non-parametric binless estimate
» Vasicek estimator given nranked ISIs {fj1] < fjz] < -+ < f[]}

= Z [ t[’+m] - t[l m]):| + Qbias, M= \/I_'l

2m 2m
Pbias = In T — (1 — T) lI/(2m) + l1’(/’1 + 1)

- %va(m m—1), ¥(z)= i|n I'(2)
i=1

> f(t, b, . ..): Kozachenko-Leonenko estimator
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Non-parametric estimation of ¢,, ¢y, Cy

» Maximum Penalized Likelihood (MPL) estimation of f(t)
» Likelihood vs. roughness penalty (Good & Gaskins, 1971)
> Let u(t) = /f(t) and for the given sample {t;, ..., t,}

n
m(a)x:ZZIoglu(t,-)l—4afu’(t)2dt—ﬂ/u”(t)2dt
ult i=1
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Non-parametric estimation of ¢,, ¢y, Cy

v

Maximum Penalized Likelihood (MPL) estimation of f(t)
Likelihood vs. roughness penalty (Good & Gaskins, 1971)
Let u(t) = /f(t) and for the given sample {ti, ..., t,}

v

v

n
m(a)x : 2ZIog|u(t,-)| —4o¢/u’(z‘)2 dt—ﬂ/u”(t)zdt
ult i=1

v

Assume Hermitian base for u = nonlinear algebraic egns.
(log-transform of {; is desirable since T > 0)

v

a, B “tune” the likelihood/penalty balance, depend on n?
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Density estimation (MPL)

» Log-normal mixture (n = 1000))

» «, B: “smoothness” regulation

@ 2
e S
Q
s
2]
S
h
S
w0
g
o E
°
s | s
e Ll w8 T L1 L1
T T T T T T T T T T T T T T
15 10 05 00 05 0 15 0 2 4 60 %0 100 120

24/35



Density estimation (MPL)

» Log-normal mixture (n = 1000))

» «, B: “smoothness” regulation
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Ch.y estimation: gamma (n = 1000)
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Non-parametric estimation: work in progress

v

v

v

v

What if B = 0? Closed-form solution is known
(Laplacian “kernels”, Klonias (1982))

Consistency: fixes asymptotics of «(n)

MLE: arbitrary but convenient, small sample size?

Different (more robust?) approach:

>

Theorem (Huber, 1974): There exists a unique ?(t) such that
its CDF interpolates the ECDF based on {t, ..., t,} and
minimizes the Fisher information J(T).

J(T) is convexin f(t)

Convergence ¢; — ¢, guaranteed

No free parameters? Simplicity of estimation?
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Experimental data application
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» ORN of freely breathing and tracheotomized rats, spontaneous
single-unit APs recorded

» Note: variability vs. randomness
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Intervals vs. counts: back to frequency coding?

N(t)

(S V)

4/—|—|—
1 (.

Spikes

0.00 0.04 0.08 0.12 0.16 0.20
Time
intervals : T ~ f(t)
— Equally’ ’
w qually ‘good { counts in a window : N(w)

» Variability, randomness, ... coefficients for ISls and counts?

> Var(-) oc E(-)® for T and N(w)  (Koyama and Kobayashi, 2016)
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Equilibrium renewal point processes
» Need to specify the start of the observation window w
» Equilibrium: the start of w is random with respect to APs
N(W)En@ To+T14+---+Th—1 <w

> N(w) is stationary, T; ~ f(t) for i > 1, however the time to first
spike is distributed as

1— [11(F) di

To ~ fo(t) = E(T)

» Note that
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Distributions of intervals and counts

» ISl distribution: T ~ f(t)
> Let p,(w) = Pr(N(w) = n),wheren>0and w > 0

> Let L{f}(s) = [,° f(t)e”*dt, s € C then it holds (Jewell, 1960)

(1 1 — L{f}(s)
po(w) = L 1%; - SZE—(T)§(W)’

([ =i P[eine]
on(W) = L 1{[ SZ]E([T) ] o
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Variability of counts

» Fano factor: variability with respect to the Poisson process Np(w)
with the same rate as N(w)

_ Var (N(W)) _ Var (N(W))
FFw) = E(N(w)) ~— Var(Na(w))

» Due to the Bernoulli- and CLT-limiting behavior:

lim_FF(w) = ¢, lim FF(w) = 1
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Randomness of counts

» “Entropy factor” as an analogy to Fano factor

H(N(w))
m, (N(W) ni_:opn(w) log pn(w)

» Poisson process with intensity A

HF (w) =

H(Ne(w)) = Aw[1 — logiw)] + &= 3 G 1og(n)
n=0
Aw—o0 1 1 1

~% ~log(2weAw) — - -
2 00T W) = e T 240w

» Limits (Bernoulli p. for w | 0 vs CLT for N(w — o0))

lim HF(w) = lim HF(w) = 1
w—>00 W»J/O
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Maximal value of the entropy factor

» Maximum entropy among all N(w) with mean value Aw:
geometric distribution Ny

1 T
Pr(N. = =1|1—- N :0,1,2,...
r( o(w) n) [ 1+Awi| 14+ Aw "

» The entropy is

H(Ng(w)) = (1 4+ Aw) log(1 + Aw) — Aw log(Aw)

» However (c.f. with the general HF(w) limit!)

w[r)noo HFg(W) - W[r)noo % =
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Entropy factor vs. Fano factor for inverse Gaussian

HF

1.5

—_

0.5

w

10*

10°

» Parameters: E(T) = 1, ¢, = {0.1,0.25,0.5,1,1.5,2}

» Randomness of the Poisson process: ISls and counts

» Bursting: random counts (c.f. ISI randomness)
» Information in temporal or frequency codes?
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Small variability = low randomness, variable # random
(Kostal et al., Eur. J. Neurosci., 2007)

Dispersion-like quantities, compare p.d.f. shapes
(Kostal et al., Inform. Sci., 2013)

Parametric x non-parametric estimation of ¢, and ¢y
(Kostal and Pokora, Entropy, 2012)

Randomness and variability: counts vs. intervals
(Rajdl et al., submitted)

Collaborators: Petr Lansky, Ondrej Pokora, Kamil Rajdl
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