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. What is Computational neuroscience?
. Neurons are not perfect

Neurons are not reliable
Neurons process information optimally . ..
4.1 Energy-efficient coding

Thanks to: Ryota Kobayashi, Petr Lansky



Computational Neuroscience

“The aim of computational neuroscience is to explain how electrical and
chemical signals are used in the brain to represent and process information.”
T. Sejnowski et al.: Computational Neuroscience, Science, 1988

Cybernetics: Or Control and Communication in the Animal and the Machine
Norbert Wiener, 1948

Why? — Progress in neuroscience (from molecules to fMRI)
— Progress in computing power

But... How the nervous system enables us to see, remember, plan?

“What are the algorithms used in the brain?”
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Computational neuroscience

» Effective theories (quantitative description)

» Since 1980’s: dramatic increase (journals, conferences, labs, ...

1. Models of neurons (networks, systems)
2. Coding, information processing and transmission

» Sensory neurons: stimulus coding = artificial systems

» Applications: technology (HW, algorithms),
bio-inspired computing

» Comput. Neuroscience vs. Artificial Neuronal Networks

)
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Selected topics (Dept. Comput. Neurosci, Prague)

» Focus: neural coding

» Neuronal spiking regularity measures and methods of their
non-parametric estimation
» Models of insect pheromone receptor neurons
(specific moth: A. polyphemus)
» Applications of statistical estimation theory
» CRB achievability, “practical” sample sizes and threshold
effectin ML estimation
» Applications of information theory
» Efficient coding hypothesis in olfaction
» Optimal processing of weak signals
» Effect of metabolic cost on information transfer
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Neuronal models

Binary “neuron”

Integrate & Fire

Hodgkin-Huxley

3D detailed

Reality

23



Spike prediction: how “good” are neuronal models?

Ryota Kobayashi: Quantitative Neuron Modeling (2007, 2008, 2009)
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0.2

100 ms

HH LIF MAT*
(Rat motor cortex) Kobayashi et al., Front. Comput. Neurosci. (2009)
Jolivet et al., J. Neurosci. Methods (2008); Gerstner & Naud, Science (2009)
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Neuronal code: basic assumptions
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Frequency vs. temporal coding

Firing fregency

Stimulus

1. Frequency: Adrian (1926), number of pulses (AP) per unit time
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Frequency vs. temporal coding

AN

Firing fregency

Stimulus

1. Frequency: Adrian (1926), number of pulses (AP) per unit time
2. Temporal: Perkel & Bullock (1968), intervals between APs,

» Variability, noise: Stein et al., Nat. Rev. Neurosci. 2005
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Reliability of neuronal response
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Reliability of neuronal response
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Reliability of neuronal response

<
Q
(=]
(=]
f L___J N
2570 0 0 0 N 257 ¢ |
. [ AT S A A A AN |
S P ||| !
£ I A R B S AT A
P l}'a Py .‘I.’.'.‘. }
2 - ne A
= I A L A [
N B AN NN Y
0 250 500 750 1000 0 250 1 000
Time (ms) T’me (ms)

Mainen and Sejnowski, Science (1995)

9/23



Reliability of neuronal response
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1. Encoding of elementary (simple) vs. complex stimuli

» rate-level, dose-response, tuning curves

» bottom-up approach?
“Convenient’ vs. natural stimulation

» parameterization (dimensionality, Gaussian processes)

» experimental setup (e.g., insect olfaction)



Efficient coding hypothesis

Horace B. Barlow, 1961

Neurons are adapted, through both evolutionary and developmental
processes, to the statistical characteristics of their natural stimulus.
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Efficient coding hypothesis

Horace B. Barlow, 1961

Neurons are adapted, through both evolutionary and developmental
processes, to the statistical characteristics of their natural stimulus.

Methods: information theory, estimation theory, . ..

» Optimality conditions, infomax (Linsker 1987)

» Retinal neurons (Laughlin 1981, Laughlin et al. 1996)

» “Scale” of neuronal performance (Rieke et al., 1996)
Extensions: metabolic cost, decoding feasibility, realistic models, ...
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Energy-efficient neural coding?

ATP

(energy) %\ Output

(response)

Input synaptic activity

P
(encoded stimulus) A

» Input (exc. conductance, X) — Output (response, Y
1) put ( ) - Output (resp )

» Rate coding: #APs in A

» Temporal coding, ...

» Model parameters, type of stimulation, ...
> Model: f(y|x)v but p(x)?
» Efficiency: Energy x Information x ...

Firing freq., Y

Input, X
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Investigated neuronal model (cortical excitatory)

Presynaptic neurons .
Spike (Impulses)
: + | Other neurons

. Input current L\\(“_v‘lrl \
— iy —>I§
/

» Extended Hodgkin-Huxley + point-conductance (stochasticity)
Adaptation (/)

Balanced input, Ag o< A,

Excitatory and inhibitory conductances, (ge,;) & Ag,
Effective reversal potential: V, (Miura et al., 2007)

> Input, x = (gg): mean excitatory conductance (input parameter)
» Output, y = #APs/ A: firing rate

v

v

v

v
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Metabolic cost of neuronal activity & efficiency

Cost (10"2 ATPs/cm?

» Empirical metabolic cost given X = x (Attwell & Laughlin, 2001)

w(x) =« x ((#APsin A)|x) + A

[k =7.1x 108 ATPm, B = 4.4 x 108 ATPm/s]

» Theoretical (model) cost: only small corrections (RK)v

» Excitatory vs. inhibitory neurons
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Methods: mutual information /(X; Y)

» Given the “model” f(y|x) and input distribution X ~ p(x):

o (1)
X Y) = /X fy POy log, o Ty

> Interpretation of /(X; Y) —why I(X; Y)?
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Methods: mutual information /(X; Y)

» Given the “model” f(y|x) and input distribution X ~ p(x):

o (1)
X Y) = /X fy POy log, o Ty

> Interpretation of /(X; Y) —why I(X; Y)?

1. General: Average statistical dependence (nonlinear)
between X and Y
take care: varying p(x) to 1 /(X; Y) may 1 MSE[x(y)] too!

2. “Information transfer” (Shannon) between X and Y': reliable
transfer, amount in bits
— conditions are not automatically guaranteed!
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Methods continued: capacity-cost function C(W)

v

Efficient coding hypothesis: find the ultimate bounds

v

Vary the input distribution p(x) to maximize /(X; Y)

CW)= max I(X;Y)
p(x):Wp<W

v

“Interpretation” of C(W): maximum information transfer, provided that
the average metabolic cost does not exceed W

v

Classical channel capacity: C = C(W — 00)
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Methods continued: capacity-cost function C(W)

v

Efficient coding hypothesis: find the ultimate bounds

» Vary the input distribution p(x) to maximize /(X; Y)

CW)= max I(X;Y)
p(x):Wp<W

“Interpretation” of C(W): maximum information transfer, provided that
the average metabolic cost does not exceed W

Classical channel capacity: C = C(W — 00)

Optimal “trade-off” between information and cost (if it exists),

the efficiency:

c(w)
E = max s
w w

i.e., 1/E is the minimal cost of 1 bit
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Methods: information optimization

» L[p]: functional over convex and compact set F (Smith, 1971)

5,L[oo] = 2% L[(1 —&)po ;L eg] — L[Po]’ ec0.1]

» L[p] diff. and convex N: unique maximum exists at py:

dgLlpo] <0 forallge F
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Methods: information optimization

» L[p]: functional over convex and compact set F (Smith, 1971)

5,L[oo] = m L[(1 —&)po ;L eg] — L[Po]’ ec0.1]

» L[p] diff. and convex N: unique maximum exists at py:

dgLlpo] <0 forallge F
» Finding C(W): convex N in p(x), e.g.,

Lp) = 1(X: Y) — A / POOW(x) dx”
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Optimality conditions

> I[p] = I(X; Y) evaluated for X ~ p(x), N[p] = [, p(x)dx —1,

I'[p] = [, w(x)p(x)dx — W, A > 0 and f8 are multipliers

Llp] = 1lp] = AI"[p] — BNIp].

» Directional diff §4 (after some manipulations)

8qLp] = /XQ(X) [Duc[f(y[x) | pP] =1 = B — Aw(x)] dx,

» Hence §L[p] < 0 implies (with "=’ for p(x) > 0)

oo 1=8
[pGfy®ax ™~k

w0z 5 [ 110100,
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Methods of solution and results

v

Numerical methods only, but the model may be arbitrary

v

Algorithm: Cutting-plane + LP
(Huang & Meyn, 2005), Eulerian x Lagrangian CM

» Results:
» obtain C(W) and the “optimal” input distribution p* (x)
for each W
» efficiency E and the corresp. optimal cost W*
» postsynaptic firing rate dist.: *(y) = [ f(y|x)p*(x) dx
» Sensitivity to perturbations of p*(x)

v

p*(x) is discrete (typical for finite-range inputs)
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Results: max. information, efficiency, PS firing rates

(a) Capacity-cost, C(W)

C(W) [bit/s]
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Resulis

(a) Capacity-cost, C(W)

: max. information, efficiency, PS firing rates

(b) Input dist.
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Results: max. information, efficiency, PS firing rates
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Results: max. information, efficiency, PS firing rates

(b) Input dist.

(c) Firing rate dist.
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Results: max. information, efficiency, PS firing rates

C(W) [bit/s]
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(a) Capacity-cost, C(W)

(b) Input dist.
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Neuronal model: increasing adaptation, gy

PS firing rate distributions
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Neuronal model: increasing adaptation, gy

V.= -60mV, gu = 8 mS/cm2 PS firing rate distributions
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Neuronal model: increasing adaptation, gy
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Neuronal model: increasing adaptation, gy
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Neuronal model: increasing adaptation, gy

V.= —-60mV. gu = 64 mS/sz PS firing rate distributions
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Results: adaptation vs. information efficiency

(a) Capacity (regardless the cost)
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Results: adaptation vs. information efficiency
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Results: adaptation vs.

C [bit/s]

(a) Capacity (regardless the cost)
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» Preliminary conclusions:
» Adaptation facilitates the efficiency
» Adaptation reduces the optimal metabolic workload

Adaptation strength, gy [mS/cm?]
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Comparison with experimental data

Experimental data:
in vivo (recordings > 30 min.),

layer 2-6 (sensorimotor cortex),

pyramidal and inter-neurons
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Data: Dr. Tomoki Fukai (RIKEN)
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Comparison with experimental data

Experimental data:

in vivo (recordings > 30 min.),
layer 2-6 (sensorimotor cortex),
pyramidal and inter-neurons
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— Predicted PSFR histograms match the data

— Sparse synaptic activity

— Log-normal distribution of synaptic weights
— Low muscarinic-K conductance (< 8 mS/cm?)
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Conclusions

» Metabolic cost considerations seem to have significant impact on
the results

» Spike-frequency adaptation improves metabolic efficiency of
information transmission,
e.g., cost per single bit decreases with increasing gy

» For discussion:
» Interpretation of information-theoretic quantities
» Achievability of information transfer
» Separated vs. joint source-channel coding
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