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Outline | Summary

Spike train as a point process
Instantaneous interspike intervals

Results (work in progress)
1. Estimation of firing rate
2. Estimation of spike train variability

Other possible applications. . .

Conclusions
= [Sls observed at given reference time have different statistics
than sequential (standard) ISls.
= Possibility to estimate classical characteristics (firing rate,
variability) in a novel way.
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Spike train as a point process



Spike train as a Point Process (PP)

Spike times S;, interspike intervals (ISI) Y;, counting process N(0, t)

time ! ! ! ! !
Si1 S Yi=S1-S Siv1 Siy2 Sit3

counting process N(0, t) J—L

spike count

= Assume time t = 0 is unrelated to spike times

» Equivalent description: {S; <t} = {N(0,t) > i}, i=1,2,...
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Point process intensity and firing rate

Conditional intensity depends on the PP history up to time t
(instantaneous firing rate)

A(t) = lim SN EFE)]
el0 5

= The mean firing rate in ‘window’ w

_E[N(t,t + w)]

v(t,w)

Without detailed description of the PP: A(t) & v(t,w)

= Let's make additional assumptions ...
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Renewal processes (ordinary) and in equilibrum™)

i) Assume {Y1,Y2,...}isi.id., Y ~ fy(y), then® for any t:

EY) ~ wilX(E:W)

ii) For arbitrary t: {S; — t, Yit1, Yit2} is not stationary, but
A= X(t), v(w) = v(t,w) and for all w > 0

1Cox, D. R. & Lewis, P. A. W. (1966) The statistical analysis of series of
events, Whistable: Latimer Trend and Co. Ltd.
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Temporal and counting descriptions (renewal PP)

= Let py(w) = Pr(N(t,t+w) =n), n=0,1,2..., then?

[l 1-LMO),,
po(w) = L7 |3 szE( ) ]()
2

= Higher moments3 of N(t,t + w) and Y? (later: Fano factor)

wooo Var(Y) 1/ Var(Y)\? E(Y?)
Var[N(t, t+w)] "~ mw 5(1 E(Y)Z) ~3E(Y)

2Jewell, W. S. (1960) ‘The properties of recurrent-event processes’, Operation
Res. 8, 446-472
3Cox, D. R. (1962) Renewal Theory, London: Methuen and Co. Ltd.
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Instantaneous firing rate

» Calculating the true firing rate (PP intensity) from the general
(non-stationary) temporal description is difficult

= Instantaneous® firing rate: inverse ISI, 1/Y (correct dimension)

*Bessou, P., Laporte, Y. & Pagés, B. (1968) ‘A method of analysing the
responses of spindle primary endings to fusimotor stimulation’, J. Physiol. 196,
37-75
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Instantaneous firing rate

» Calculating the true firing rate (PP intensity) from the general
(non-stationary) temporal description is difficult

= Instantaneous® firing rate: inverse ISI, 1/Y (correct dimension)

5

= However’: mean instantaneous firing rate (renewal PP):

‘() 2w

*Bessou, P., Laporte, Y. & Pagés, B. (1968) ‘A method of analysing the
responses of spindle primary endings to fusimotor stimulation’, J. Physiol. 196,
37-75

®Lansky, P., Rodriguez, R. & Sacerdote, L. (2004) ‘Mean Instantaneous Firing
Frequency Is Always Higher Than the Firing Rate’, Neural Comput. 16, 477-489
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Instantaneous interspike intervals



Unifying the steady state and instantaneous firing rate

= Observe single or parallel spike trains (at some time tp).

= ISls described by Y ~ fy(y): always from “spike to spike”, i.e.,
to corresponds to a spike!

= However, spike trains are often modulated by external stimulus
— to must be unrelated to spikes = external/laboratory time.
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Unifying the steady state and instantaneous firing rate

= Observe single or parallel spike trains (at some time tp).

= ISls described by Y ~ fy(y): always from “spike to spike”, i.e.,
to corresponds to a spike!

= However, spike trains are often modulated by external stimulus
— tp must be unrelated to spikes = external/laboratory time.

= Longer ISls occupy more time = more likely to be observed.

= The instantaneous ISIs X:

X ~ cxfy(x),| c¢=A=1/E(Y)

= Therefore

“(x) ==& =



Instantaneous interspike intervals® (summary)

A Inspection tp synchronized with spike times B Inspection t synchronized with reference time

! 1 t +— trial 1 % 1 t t t
o b tao o p— |
o L S o N

0t ty’ reference time 0 to reference time
Observed ISls: Y ~ fy(y) Observed ISls biased: X ~ A\xfy(x)
Mean inst. rate biased: E(1/Y) > A Mean inst. rate: E(1/X) = A

®Kostal, L., Lansky, P. & Stiber, M. (2018) ‘Statistics of inverse interspike
intervals: the instantaneous firing rate revisited’, Chaos 28, 106305
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Estimation of firing rate from
instantaneous ISls



Non-parametric estimator based on instantaneous ISls X;

= Estimate the instantaneous firing rate A (assume renewal PP)
» Immediate consequence of A = E(1/X): moment estimator

AE(1/Y) — X2

~ 1M1 ~ ~
m= Zl X EQm) =X, MSEQ\,) = .
1=

= Mom. est. not efficient’, e.g., lim, 500 nMSE(Am) > 1/15(N)
» Furthermore E(1/Y) = oo if fy(0) >0 (e.g., Poisson®)

"Kostal, L. (2023) ‘Estimation of firing rate from instantaneous interspike
intervals’, (in preparation)

8Lansky, P., Rodriguez, R. & Sacerdote, L. (2004) ‘Mean Instantaneous Firing
Frequency Is Always Higher Than the Firing Rate’, Neural Comput. 16, 477-489
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Maximum likelihood estimator (1)

= MLE efficient under mild conditions (— mismatched est.)

Let X ~ fx(x; A) = Axfy(x), then

n
ApL = arg max ; log fx(x; A)

= Poisson process ISIs Y: fy(y) = Aexp(—=Ay)
MLE can be derived® and un-biased Vn, E(Ap) = A

—(~———S"x) , MSE = X n>2
AmL (2n—1§ ) SEQAwm) = 57—

Kostal, L. (2023) ‘Estimation of firing rate from instantaneous interspike
intervals’, (in preparation)
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Maximum likelihood estimator (I1)

= MLE can be derived also for, e.g., v p.d.f. of Y

Useful case: Poisson process with refractory period 7, (< 1/X)

~ ,u+27',—\/u2+4,u7',—47',2 1.0
AML = 72 , B=) X
7?2 n“

= Biased, no closed form for Var(Apy)

» From data: 7, = min X; (mismatched if 7, = 0)
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Maximum likelihood estimator (I1)

= MLE can be derived also for, e.g., v p.d.f. of Y

= Useful case: Poisson process with refractory period 7, (< 1/))

~ ,u+27',—\/u2+4,u7',—47',2 1.0
AML = 72 , B=) X
7?2 n“

= Biased, no closed form for Var(Apy)

» From data: 7, = min X; (mismatched if 7, = 0)

= Renewal PP vs. non-stationary spike trains
Can we use estimators based on X;?
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Estimation under time-dependent \(t)

» Estimate A\(t) at t = 1

0 to reference time
» Eqgs. derived under renewal PP — can be used more generally?

= AL is “self-adaptive” (time scale automatically given by (X;))
= no optimization, no additional parameters
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Preliminary comparison of different estimators

= Most methods pool spike train data (across trials)

= Binning, kernel ... binwidth guess (20ms, 50ms, ...)
= Optimized!® binwidth: global and local
= Bayesian local adaptive binwidth (BAKS)!!

= The kernel choice does not matter that much??

= The estimators based on X; operate differently — no pooling!

0Shimazaki, H. & Shinomoto, S. (2010) ‘Kernel bandwidth optimization in
spike rate estimation’, J. Comput. Neurosci. 29, 171-182

" Ahmadi, N., Constandinou, T. G. & Bouganis, C-S. (2018) ‘Estimation of
neuronal firing rate using Bayesian Adaptive Kernel Smoother (BAKS)’, PLoS
ONE 13, e0206794

2Nawrot, M., Aertsen, A. & Rotter, S. (1999) ‘Single-trial estimation of
neuronal firing rates: from single-neuron spike trains to population activity’, J.
Neurosci. Meth. 94, 81-92
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Example: simulated data (Pois, 7,), rapid switching of \(t)
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Simulated data: comparison, different \(t) profiles
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Example: experimental data (moth ORN) — ‘biased’ Ay,

method

— gauss50
— gauss.opt
— instant
— BAKS

Time (5)
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Tentative summary (firing rate estimation from X;)

= Apparently, there is no single universally optimal firing rate

estimator under all circumstances

= Standard methods: pooling of parallel spike trains

= Estimation based on instantaneous ISls X:

Computationally efficient (simple)

MLE (and MSE!) can be derived for many cases of interest
under the renewal assumption

No pooling

Non-parametric vs. mismatched estimation: a real problem?
Usage for more general situations (non-stationarity)
Upward-bias in non-stationary case: different “solutions”?
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Estimation of local (instantaneous)
spike train variability



Estimation of local spike train variability

= N.B.: assume n parallel spike trains, {X;} realizations of X

X1 . Y1

Xz Yo

X3 . Y3

AW N P

X4

Xn N Yn

= Recall: X ~ Axfy(x), Y ~fy(y) and A=1/E(Y).

= Local spike train variability around t; (renewal or not).
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Fano factor

The relation between X and Y yields the moment equation:

E(XK) = XE(Y*Y), kez

= Classical measure of variability based on counts (N; in i-th trial)

FE(w) — Var[N(t, t + w)]  FEy - a?(N;)

E[N(t, t + w)] (Ni)

Renewal PP: often w — oo thus'® FF = CZ = Var(Y)/E(Y)?

s Therefore:
1
FF=E(—= |E(X)-1
(%) E00

3Cox, D. R. (1962) Renewal Theory, London: Methuen and Co. Ltd.
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Estimator of FF based on instantaneous ISls

= = estimator (note that E(ﬁ:X) = FF)

— 1 1

Var(FFx) can be derived* in a closed form: contains E(1/Y)

E(1/Y) < o0 if! fy continuous, fy(0) =0 and finite f,,(0).

= The important role of refractory period 7!

14Rajdl, K. & Kostal, L. (2023) ‘Estimation of the instantaneous spike train
variability’, (submitted)

Piegorsch, W. & Casella, G. (1985) ‘The Existence of the First Negative
Moment’, Am. Stat. 39, 60-62

21/27



Additional estimators
= “Remove” E(1/Y): combine X and N(t — w/2,t + w/2):

FFxn(w) = nzzNZX—l

» FFxy is also unbiased, curious case wy = (X;):

F-I\:XN(Wo) = F_I\:XN = <#APS in Wo) -1
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Additional estimators

“Remove” E(1/Y): combine X and N(t — w/2,t + w/2):

FFxn(w) = nzzNZX—l

» FFxy is also unbiased, curious case wy = (X;):

F-I\:XN(WQ) = F_I\:XN = <#APS in W0> -1

= MLE available for many models of Y (v, logn, iG: ﬁ:x)

Poisson with 7, > 0

FFm = <<Xi> —i—<;<;r>1in(Xi))2

= For completeness (C2): FFy based on Y; (not local w.r.t. ty)
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Example results, average values, A = 1,7, = 0.1

rRMSE [%, log scale]

Gamma distribution

Inverse Gaussian distribution

Log-normal distribution

300

100

30

oT=u

os=u

05 10 20 5.0

Estimator:

100 01 02 05 10 20 50 100 01 02 05
F [log scale]

FRu(wo) == FRu(w) 8= FR, = FFx % FRqy 5 FRue



Estimation of FF = C2 under renewal PP

No universally optimal estimator ... but:

Compare ﬁ:N(w) with ﬁ:XN(w) at w = wp or “w =00

= Surprisingly, I?I\-_N( ) is rarely optimal (blas7)
= Almost always: MSE[FFN(WO)] > MSE[FF xn(wo)]
= (Using exact A in FF xn does not help!)

MSE of FFx grows with theoretical FF
MLE: not as good as expected?

Conclusion: on “average” FF xy(wp) is the most accurate
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Example results: change-point with respect to C2

Gamma distribution Inverse Gaussian distribution Log-normal distribution

Mean [logscale]

7300
©

8

(%]

g =
] X
= 100 E
& 7
% =
2 g
T 3

-6 -3 0 3 6 6 -3 0 3 6 -6 -3 0 3 6
Time
Estimator: Fruw — FRug — FRug = FRoy = FR = FRa
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Estimation of FF in “non-stationary” situations

= Change-point!® with respect to: variability vs. rate
= Variability: again, I:'I\-'XN seems like a good option
= (Quickly captures the correct FF after the change point)
= Rate: “standard” estimators perform better, however, we can
employ the operational time'’
= Extension to more general non-stationary cases? — combine

firing rate estimation and time re-scaling.

15Rajdl, K. & Kostal, L. (2023) ‘Estimation of the instantaneous spike train
variability’, (submitted)

7Rajdl, K., Lansky, P. & Kostal, L. (2020) ‘Fano factor: a potentially useful
information’, Front. Comput. Neurosci. 14, 569049
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Summary



Conclusions

The key difference between “standard” ISls Y; and
“instantaneous” ISls X;
The distributions of Y and X differ: length-bias

= If we wish to estimate firing rate (at some time t) then
» |t is inevitable to employ X;
= Using Y; is contradictory (spike at time t)

Simple and potentially useful estimators
= Firing rate
= Fano factor

Thanks to
» Kamil Rajdl, Petr Lansky
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