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Outline | Summary

• Spike train as a point process
• Instantaneous interspike intervals
• Results (work in progress)

1. Estimation of firing rate
2. Estimation of spike train variability

• Other possible applications. . .

Conclusions
• ISIs observed at given reference time have different statistics

than sequential (standard) ISIs.
• Possibility to estimate classical characteristics (firing rate,

variability) in a novel way.
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Spike train as a point process



Spike train as a Point Process (PP)

Spike times Si , interspike intervals (ISI) Yi , counting process N(0, t)

Yi = Si+1 − Si
time

Si−1 Si Si+1 Si+2 Si+3

sp
ike

co
un

t

counting process N(0, t)

• Assume time t = 0 is unrelated to spike times

• Equivalent description: {Si ≤ t} = {N(0, t) ≥ i}, i = 1, 2, . . .
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Point process intensity and firing rate

• Conditional intensity depends on the PP history up to time t
(instantaneous firing rate)

λ(t) = lim
ε↓0

E[N(t, t + ε)]

ε

• The mean firing rate in ‘window’ w

ν(t,w) =
E[N(t, t + w)]

w

• Without detailed description of the PP: λ(t) ?↔ ν(t,w)

• Let’s make additional assumptions . . .
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Renewal processes (ordinaryi) and in equilibrumii))

i) Assume {Y1,Y2, . . . } is i.i.d., Y ∼ fY (y), then1 for any t:

1
E(Y )

= lim
w→∞

ν(t,w)

ii) For arbitrary t: {Si − t,Yi+1,Yi+2} is not stationary, but
λ = λ(t), ν(w) = ν(t,w) and for all w > 0

λ =
1

E(Y )
= ν(w)

1Cox, D. R. & Lewis, P. A. W. (1966) The statistical analysis of series of
events, Whistable: Latimer Trend and Co. Ltd.
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Temporal and counting descriptions (renewal PP)

• Let pn(w) = Pr
(
N(t, t + w) = n

)
, n = 0, 1, 2..., then2

p0(w) = L−1
[1
s − 1− L[fY ](s)

s2 E(Y )

]
(w)

pn(w) = L−1
[(

1− L[fY ](s)
)2(L[fY ](s))n−1

s2 E(Y )

]
(w), n ≥ 1

• Higher moments3 of N(t, t + w) and Y ? (later: Fano factor)

Var[N(t, t+w)]
w→∞≈ Var(Y )

E(Y )3
w+

1
2

(
1+Var(Y )

E(Y )2

)2
− E(Y 3)

3E(Y )3

2Jewell, W. S. (1960) ‘The properties of recurrent-event processes’, Operation
Res. 8, 446–472
3Cox, D. R. (1962) Renewal Theory, London: Methuen and Co. Ltd.
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Instantaneous firing rate

• Calculating the true firing rate (PP intensity) from the general
(non-stationary) temporal description is difficult

• Instantaneous4 firing rate: inverse ISI, 1/Y (correct dimension)

• However5: mean instantaneous firing rate (renewal PP):

E

( 1
Y

)
≥ 1

E(Y )

4Bessou, P., Laporte, Y. & Pagés, B. (1968) ‘A method of analysing the
responses of spindle primary endings to fusimotor stimulation’, J. Physiol. 196,
37–75

5Lansky, P., Rodriguez, R. & Sacerdote, L. (2004) ‘Mean Instantaneous Firing
Frequency Is Always Higher Than the Firing Rate’, Neural Comput. 16, 477–489
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Instantaneous interspike intervals



Unifying the steady state and instantaneous firing rate

• Observe single or parallel spike trains (at some time t0).

• ISIs described by Y ∼ fY (y): always from “spike to spike”, i.e.,
t0 corresponds to a spike!

• However, spike trains are often modulated by external stimulus
– t0 must be unrelated to spikes ⇒ external/laboratory time.

• Longer ISIs occupy more time ⇒ more likely to be observed.

• The instantaneous ISIs X :

X ∼ c xfY (x), c = λ = 1/E(Y )

• Therefore
E

( 1
X

)
= λ =

1
E(Y )
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Instantaneous interspike intervals6 (summary)

A Inspection t0 synchronized with spike times

reference time0 t ′′0

trial 3

t ′0

trial 2

t ′′′0

trial 1

Observed ISIs: Y ∼ fY (y)
Mean inst. rate biased : E(1/Y ) > λ

B Inspection t0 synchronized with reference time

reference time0 t0
Observed ISIs biased : X ∼ λxfY (x)

Mean inst. rate: E(1/X ) = λ

6Kostal, L., Lansky, P. & Stiber, M. (2018) ‘Statistics of inverse interspike
intervals: the instantaneous firing rate revisited’, Chaos 28, 106305
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Estimation of firing rate from
instantaneous ISIs



Non-parametric estimator based on instantaneous ISIs Xi

• Estimate the instantaneous firing rate λ (assume renewal PP)

• Immediate consequence of λ = E(1/X ): moment estimator

λ̂m =
1
n

n∑
i=1

1
Xi

, E(λ̂m) = λ, MSE(λ̂m) =
λE(1/Y )− λ2

n

• Mom. est. not efficient7, e.g., limn→∞ nMSE(λ̂m) > 1/IF (λ)

• Furthermore E (1/Y ) = ∞ if fY (0) > 0 (e.g., Poisson8)

7Kostal, L. (2023) ‘Estimation of firing rate from instantaneous interspike
intervals’, (in preparation)
8Lansky, P., Rodriguez, R. & Sacerdote, L. (2004) ‘Mean Instantaneous Firing
Frequency Is Always Higher Than the Firing Rate’, Neural Comput. 16, 477–489
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Maximum likelihood estimator (I)

• MLE efficient under mild conditions (→ mismatched est.)

• Let X ∼ fX (x ;λ) ≡ λxfY (x), then

λ̂ML = argmax
λ

n∑
i=1

log fX (x ;λ)

• Poisson process ISIs Y : fY (y) = λ exp(−λy)

• MLE can be derived9 and un-biased ∀n, E(λ̂ML) = λ

λ̂ML =

( 1
2n − 1

n∑
i=1

Xi

)−1
, MSE(λ̂ML) =

λ2

2n − 2 , n ≥ 2

9Kostal, L. (2023) ‘Estimation of firing rate from instantaneous interspike
intervals’, (in preparation)
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Maximum likelihood estimator (II)

• MLE can be derived also for, e.g., γ p.d.f. of Y

• Useful case: Poisson process with refractory period τr (< 1/λ)

λ̂ML =
µ+ 2τr −

√
µ2 + 4µτr − 4τ2r
2τ2r

, µ =
1
n

n∑
i=1

Xi

• Biased, no closed form for Var(λ̂ML)

• From data: τ̂r = minXi (mismatched if τr = 0)

• Renewal PP vs. non-stationary spike trains
Can we use estimators based on Xi?
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Estimation under time-dependent λ(t)

• Estimate λ(t) at t = t0

reference time0 t0
• Eqs. derived under renewal PP → can be used more generally?
• λ̂ML is “self-adaptive” (time scale automatically given by ⟨Xi⟩)

• no optimization, no additional parameters
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Preliminary comparison of different estimators

• Most methods pool spike train data (across trials)
• Binning, kernel . . . binwidth guess (20ms, 50ms, . . . )
• Optimized10 binwidth: global and local
• Bayesian local adaptive binwidth (BAKS)11

• The kernel choice does not matter that much12

• The estimators based on Xi operate differently – no pooling!
10Shimazaki, H. & Shinomoto, S. (2010) ‘Kernel bandwidth optimization in
spike rate estimation’, J. Comput. Neurosci. 29, 171–182
11Ahmadi, N., Constandinou, T. G. & Bouganis, C-S. (2018) ‘Estimation of
neuronal firing rate using Bayesian Adaptive Kernel Smoother (BAKS)’, PLoS
ONE 13, e0206794
12Nawrot, M., Aertsen, A. & Rotter, S. (1999) ‘Single-trial estimation of
neuronal firing rates: from single-neuron spike trains to population activity’, J.
Neurosci. Meth. 94, 81–92
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Example: simulated data (Pois, τr), rapid switching of λ(t)
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Simulated data: comparison, different λ(t) profiles
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Example: experimental data (moth ORN) – ‘biased’ λ̂ML
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Tentative summary (firing rate estimation from Xi)

• Apparently, there is no single universally optimal firing rate
estimator under all circumstances

• Standard methods: pooling of parallel spike trains

• Estimation based on instantaneous ISIs X :
• Computationally efficient (simple)
• MLE (and MSE!) can be derived for many cases of interest

under the renewal assumption
• No pooling
• Non-parametric vs. mismatched estimation: a real problem?
• Usage for more general situations (non-stationarity)
• Upward-bias in non-stationary case: different “solutions”?
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Estimation of local (instantaneous)
spike train variability



Estimation of local spike train variability

• N.B.: assume n parallel spike trains, {Xi} realizations of X

Y1X1
1 .

Y2X2
2 .

Y3X3
3 .

X4
4 .

YnXn
n .

t0

w

...

• Recall: X ∼ λxfY (x), Y ∼ fY (y) and λ = 1/E(Y ).

• Local spike train variability around t0 (renewal or not).
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Fano factor

• The relation between X and Y yields the moment equation:

E(X k) = λE(Y k+1), k ∈ Z

• Classical measure of variability based on counts (Ni in i-th trial)

FF (w) =
Var[N(t, t + w)]

E[N(t, t + w)]
⇒ F̂FN =

σ2(Ni)

⟨Ni⟩

• Renewal PP: often w → ∞ thus13 FF = C2
V = Var(Y )/E(Y )2

• Therefore:

FF = E

( 1
X

)
E(X )− 1

13Cox, D. R. (1962) Renewal Theory, London: Methuen and Co. Ltd.
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Estimator of FF based on instantaneous ISIs

• ⇒ estimator (note that E(F̂FX ) = FF )

F̂FX =
1

(n − 1)n
n∑

i=1

1
Xi

n∑
i=1

Xi − 1

• Var(F̂FX ) can be derived14 in a closed form: contains E(1/Y )

• E(1/Y ) < ∞ if15 fY continuous, fY (0) = 0 and finite f ′Y (0).

• The important role of refractory period τr !

14Rajdl, K. & Kostal, L. (2023) ‘Estimation of the instantaneous spike train
variability’, (submitted)
15Piegorsch, W. & Casella, G. (1985) ‘The Existence of the First Negative
Moment’, Am. Stat. 39, 60–62
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Additional estimators

• “Remove” E(1/Y ): combine X and N(t − w/2, t + w/2):

F̂FXN(w) =
1

wn2
n∑

i=1
Ni

n∑
i=1

Xi − 1

• F̂FXN is also unbiased, curious case w0 = ⟨Xi⟩:

F̂FXN(w0) ≡ F̂FXN = ⟨#APs in w0⟩ − 1

• MLE available for many models of Y (γ, logn, iG: F̂FX )

• Poisson with τr > 0

F̂FML =

( ⟨Xi⟩
⟨Xi⟩+ 2min(Xi)

)2

• For completeness (C2
V ): F̂FY based on Yi (not local w.r.t. t0)
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Example results, average values, λ = 1, τr = 0.1
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Estimation of FF = C 2
V under renewal PP

• No universally optimal estimator . . . but:

• Compare F̂FN(w) with F̂FXN(w) at w = w0 or “w = ∞”
• Surprisingly, F̂FN(∞) is rarely optimal (bias?)
• Almost always: MSE[F̂FN(w0)] > MSE[F̂FXN(w0)]

• (Using exact λ in F̂FXN does not help!)

• MSE of F̂FX grows with theoretical FF

• MLE: not as good as expected?

• Conclusion: on “average” F̂FXN(w0) is the most accurate
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Example results: change-point with respect to C 2
V
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Estimation of FF in “non-stationary” situations

• Change-point16 with respect to: variability vs. rate
• Variability: again, F̂FXN seems like a good option

• (Quickly captures the correct FF after the change point)
• Rate: “standard” estimators perform better, however, we can

employ the operational time17

• Extension to more general non-stationary cases? → combine
firing rate estimation and time re-scaling.

16Rajdl, K. & Kostal, L. (2023) ‘Estimation of the instantaneous spike train
variability’, (submitted)
17Rajdl, K., Lansky, P. & Kostal, L. (2020) ‘Fano factor: a potentially useful
information’, Front. Comput. Neurosci. 14, 569049
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Summary



Conclusions

• The key difference between “standard” ISIs Yi and
“instantaneous” ISIs Xi

• The distributions of Y and X differ: length-bias
• If we wish to estimate firing rate (at some time t) then

• It is inevitable to employ Xi
• Using Yi is contradictory (spike at time t)

• Simple and potentially useful estimators
• Firing rate
• Fano factor
• . . .

Thanks to
• Kamil Rajdl, Petr Lansky

27/27


	Spike train as a point process
	Instantaneous interspike intervals
	Estimation of firing rate from instantaneous ISIs
	Estimation of local (instantaneous) spike train variability
	Summary

