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Using the structure of inhibitory networks to unravel mechanisms of
spatiotemporal patterning

Maxim Bazhenov
Department of Cell Biology and Neuroscience,

University of California, Riverside, USA
bazhenov@salk.edu

We established a relationship between an important structural property of an inhibitory network, its
colorings, and the dynamics it constrains. Using a model of the insect antennal lobe we show that
our description allows the explicit identification of the groups of inhibitory interneurons that switch,
during odor stimulation, between activity and quiescence. This description optimally matches the
perspective of the downstream neurons looking for synchrony in ensembles of pre-synaptic cells.
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On dependency properties of the ISIs generated by a two
compartmental neuronal model

Elisa Benedetto
Department of Mathematics "G. Peano", University of Torino

Via Carlo Alberto 10, Torino, Italy
elisa.benedetto@unito.it

Laura Sacerdote
Department of Mathematics "G. Peano", University of Torino

Via Carlo Alberto 10, Torino, Italy
laura.sacerdote@unito.it

One dimensional Leaky Integrate and Fire neuronal models describe Interspike Intervals as a renewal
process and disregard the geometry of the neuron. Multicompartment models account for the
geometrical features of the neuron but they are too complex for their mathematical tractability.
Leaky Integrate and Fire two compartment models seem a good compromise between mathematical
tractability and an improved realism. Indeed they allow to relax the renewal hypothesis, typical of
one dimensional models, without introducing too strong mathematical difficulties. Our aim is to
enlarge the analysis of the two compartment model studied by Lansky and Rodriguez, using some
specific mathematical tools together with simulation techniques. This model is one of the simplest
models allowing the dependence between interspike intervals (ISIs). This fact motivates its study,
as a first prototype of a model neuron of non renewal type.

Keywords: Two compartment neural model, ISI dependency properties
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Modelling of Sensory Pathway of Swimming Initiation in Young Frog
Tadpole Spinal Cord: a Developmental Approach

Roman Borisyuk, Kalam Abul AlAzad
Plymouth University, Plymouth, PL4 8AA UK

rborisyuk@plymouth.ac.uk

Alan Roberts, Steve Soffe, Deborah Conte, Edgar Buhl
University of Bristol
Bristol, BS8 1GU, UK

A.Roberts@bristol.ac.uk

The relationship between structure and function of neuronal circuits is a challenging problem in
neuroscience which has two main aspects: 1) How does a dynamical pattern of spiking activity
lead to functions like cognitive behaviour? 2) What methods can identify the neuronal connections
which lead to appropriate activity of a circuit?

In our previous work [1] we have developed a biologically realistic anatomical model of the
tadpole spinal cord which is based on the developmental approach. The idea of this method is
to analyze available experimental data on neuron anatomy, function and synaptic connections and
extract their “characteristic features” which are then used for modelling. Thus, the model is able to
generate an extended set of “artificial data” with the same characteristic features as the more limited
experimental evidence.

The anatomical model is expanded to include both the hide brain and the spinal cord. A new
model is based on three chemical gradients and some other simple rules which generate realistic
neuronal axonal projection patterns for each of the neurons in the network. For each neuron type
we therefore distribute cell bodies along the neuronal axis and generate axon projections using the
growth model. We map the axons onto a two-dimensional nervous system and allow connections to
form with a certain probability where axons cross the fixed dendrites assigned to each neuron. This
gives us what we call a “connectome”, a pattern of connections between all the different types of
neurons [2].

To model spiking activity on the neural network, we use a conductance-based Hodgkin-Huxley
type model with parameters set according to available neurophysiological measurements for each
neuron type ([3]). Connections in the neuronal network are according with the connectome.

Functioning of the model is based on two main principles: 1) pacemaker activity, mutual excita-
tion and Post-Inhibitory Rebound (PIR) in excitatory descending Inter-Neurons (dIN); 2) inhibition
of activity on opposite side by the commissural Inter-Neurons (cIN). Oscillator half centres on each
side of the body include both excitatory dIN and inhibitory cIN neurons.

Swimming initiation is modeled by a brief simulation of three nearby sensory neurons (RB cells)
at some point on one side of the body. Although stimulation is possible at any point of the body,
an excitation of sensory neurons is delivered by the network (with connections according to the
connectome) to the hind brain and the rostral part of the spinal cord to excite dIN neurons at the
rostral position of the spinal cord. From the rostral part, activity of dIN neurons propagates along
the body (metachronal wave). Due to the inhibitory activity of the commissural cIN neurons, left
and right sides of the body demonstrate anti-phase oscillations.

A remarkable result of this modelling is that the spatio-temporal pattern of spiking activity corre-
sponds to swimming. This activity pattern is stable in some region of the parameter space. Our
model is probably the first demonstration of how a biologically realistic connectome (structure)
leads to a proper spatio-temporal pattern of spiking activity (function).

Keywords: connectome, spiking activity, swimming pattern
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Determinism, Randomness and the Question of the “Free Will” –
Examined from a Neural Coding Perspective

Hans A. Braun
Neurodynamics Group, Institute of Physiology and Pathophysiology, Philipps University of Marburg

Deutschhausstrasse 2, D-35037 Marburg Germany
braun@staff-uni.marburg.de

http://www.uni-marburg.de/fb20/physiologie/ags/braun

The existence of a “free will” has repeatedly been questioned since ancient times. In recent years,
attacks against the “free will” specifically came from neuroscience. EEG recordings [1] as well as
more recent fMRI data [2], have demonstrated that action related brain activity (readiness poten-
tials, BOLD signals) occurs up to several seconds before an individual becomes aware about his/her
decision to perform the action. As neuronal mechanisms are obeying physical laws it has been
proposed that all decisions are fully determined already before the individuals become aware of
those, only having the “illusion” of a free will.

Whether these experimental data can really disprove the existence of a “free will” has contro-
versially been discussed [3, 4], also with critical contributions of Libet himself [5]. Here, only
the argument of determinism shall be considered, thereby specifically reminding on basic neuro-
physiology knowledge that, in principle, is already known since 60 years (www.cnsorg.org/
hodgkin-huxley60) when Hodgkin and Huxley have published their groundbreaking work about
the generation and conduction of action potentials, modeled by voltage dependent rate constants[6].
In between, it could be demonstrated in innumerous experiments that the rate constants, indeed,
reflect transition probabilities between open and closed ion channel states [7]. This indicates that
there exists a particular type of randomness, apparently driven by Brownian motion that is prin-
cipally unavoidable as long as the temperature does not fall to absolute zero, i.e. under all life
compatible conditions. This randomness (or “noise”) is different from common stochasticity which
may result from a manifold of unknown influences that are not under control.

Ion channel openings and closings, of course, first of all depend on physiological parameters,
e.g. membrane potential or neurotransmitters and neuromodulators. Nevertheless, certain random-
ness always remains. An example is shown in Fig.1 relating an ion current activation curve to the
underlying transitions rates of ion channel open and closing probabilities demonstrating significant
fluctuations around deterministically expected steady state values. This “channel noise” of course,
is becoming smaller with further increasing number of ion channels. Nevertheless, the deterministic
value would only be reached with an infinitely high number of ion channels or, alternatively, after
an infinitely long time. Hence, in real life there is no chance to get rid of randomness in neural
coding and brain functions.

Noteworthy, even small channel noise can be dramatically blown up especially when it originates
from subthreshold currents with slow activation and inactivation kinetics [8]. While the shape of an
action potential is essentially determined by fast Na+- and K+-currents, the timing of action potential
initiation - and fluctuations – depends on subthreshold currents, often generated by comparably few
ion channels. The thereby induced variations in the temporal pattern of action potential generation
lead to a principally unavoidable component also of synaptic noise. As a consequence, ion channel
fluctuations can be dramatically blown up when propagated through individual neurons’ action
potential generation to synaptic effects in neuronal networks. At each level the direct or indirect
impact of channel noise can further be enhanced by cooperative effects with the systems’ inherent
nonlinearities. Hence, a significant part of the well-known randomness of brain functions at all
levels may be the result of principally unavoidable channel noise.

Principle unpredictability has been discussed in different contexts, specifically emphasized in
physics by Heisenberg’s uncertainty relation. In biology, the relations between “chance and neces-
sity” seem to achieve a particular relevance not only for random mutations in evolution [9] but also
for everyday life of neural coding. There are neurons in diverse brain nuclei (e.g. amygdala and
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Figure 1: Left diagram: Sigmoid curve of voltage dependent ion current activation a = 1/(1+exp(−s(V−Vh)
(Vh = 30 mV, s = 0.14) related to exponential voltage dependencies of ion channel transitions probabilities
between open and closed states po,c = x ∗ exp(y(V − Vh) (per ms). that are implemented symmetrically with
unit value at Vh and x = 0.1, y = (−)0.065. Right diagram: Examples of random ion channel switching
over 50ms at half activation voltage Vh = 30mV, p indicating the relative open state. With one thousand of
such simulation runs (i.e. ion channels) the time course of compound current activation, plotted in the left
diagram for different voltages, still shows significant fluctuations. Bars of black circles indicate the variation
range of 50ms simulations runs as shown on the right.

entorhinal cortex) as well as sensory receptors (thermo- and electroreceptors [10]) that apparently
take advantage of random fluctuations for their proper functioning.

In conclusion, randomness in neural coding and brain functions is principally unavoidable. This,
of course, is not a proof of “free will” – but determinism, for sure, is also not a good argument
against.

Keywords: ion channels, action potential, noise, chance, Hodgkin-Huxley
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Fast learning in single synapses and behavioral learning times

Guido Bugmann
Plymouth University

Drake Circus, Plymouth PL4 8AA, United Kingdom gbugmann@plymouth.ac.uk
www.plymouth.ac.uk/staff/gbugmann

Human can learn new facts and rules in a few seconds from a single presentation of a stimulus [1].
There is little experimental information on the speed of onset of synaptic changes in biology.

The first part of this paper estimates learning speed from synaptic depression and spine growth
data, to determine how fast weight changes can actually take place. The resulting learning speed of
a S-R association in a multilayer network of LIF neurons developed in [2] is then examined. This
has implications on the number of synaptic relays that can practically be involved in fast learning
and on the representation of sensory information.

Learning speed estimation from synaptic depression. Given that LTP requires the insertion of
new AMPA receptors in the synapse, information on the speed of the process can be gained from
observing the recovery from synaptic depression, although it is difficult to separate pre-synaptic
vesicle replenishing effects, postsynaptic AMPAR recovery processes and diffusive contributions.
Recovery is probably dominant for large synapses while diffusion and vesicle depletion dominate
for small synapses [3]. When intracellular calcium concentration is increased through NMDA acti-
vation, the recovery from depression is slowed down, indicating that diffusion effects can be the
limiting factor in the recovery time from depression. Thus, recovery time constants from depression
represents a lower bound on the receptors influx time during learning. From data published in [3],
the full synaptic conductivity is restored in approximately 100ms.

Estimation from the speed of growth of new spines. There is a good correlation between synapse
area and number of AMPA receptors in a synapse [4]. Therefore, another source of information on
the speed of learning is the observation of the speed of growth of spines. Several experiments have
shown very fast growth of new spines in the presence of glutamate produced by uncaging. In [5], a
spine can grow by 1um with an average spine head area of 0.4um2 in as little as 10 seconds. This is
produced by 20 uncaging pulses produced at 2Hz. The same growth can be produced by 20 pulses
at 0.5Hz, in a total time of 40 sec. The process requires NMDA activation. The independence of
pulse frequency suggests that a certain amount of growth occurs for each pulse with a rate of at
least 0.23um2/sec. In [4] synapses with a radius of 0.1um have no AMPAR, while those with 0.2um
have a maximum number. The area difference is 0.19um2, which could be grown in just less than 1
second.

Implications for fast learning. The data presented above provide a maximum time of learning
per synapse of 1 sec based on spine growth and a minimum of around 100ms corresponding to the
recovery time from depression. With an input stimulus firing at around 100Hz, these boundaries
allow for between 10 and 100 spikes to induce the desired synaptic weight. In a 6-layer multilayer
system such as the one described in [2], we have set the learning rate so that 2, 20, 50 and 100
spikes are needed to set a weight, the learning times are found to be respectively 680 ms, 1066 ms,
1615 ms, and 2764 ms (fig. 1)

Fig 1A and 1B indicate that the learning time scales with the number of trained layers. Fig 1C
shows that the total learning T time scales linearly with the number m of input spikes needed to
learn one weight: T = 700+ 21m. For up to 20 spikes needed to train one synapse, the overall
learning time is less than 1 second, a duration that is behaviorally realistic. However, if more spikes
were needed, then one would need to reduce the number of layers to keep the learning time below
1 sec. Such a reduction would require an appropriate representation to have been pre-trained in
deeper layers. It is surprising that a 50 fold decrease of the rate of synaptic weight change only
causes a 2.4 fold increase of the learning time. Fig 1C reveals a basic learning-rate-independent
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A) B) C)

Figure 1: Fraction of active nodes in successive layers as learning progresses and learning time.
The x-axis in A) and B) represents a duration of 2 seconds. A: Condition where the new weight is
effective from the second input spike on each synapse. B: Condition where 20 spikes are needed to
bring the weight to the same level. All active inputs fire Poisson spike trains at 100Hz. The weight
of each synapse converges towards W0/n where W0 is the size of an initial pool of weight resource,
e.g. extra-synaptic surface AMPAR, and n is the number of active inputs of the neuron . More details
can be found in [2]. C: Learning time as a function of the number of spikes needed.

learning time, possibly linked to the stochastic arrival of the inputs, to which the weight build-up
process adds a component that increases linearly with the number of spikes needed.

Keywords: Synaptic learning. Receptors mobility. AMPAR pool.
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A Simple Algorithm for Simulating Firing Times
predicted by a LIF Model

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II

Via Cintia, Monte S.Angelo, 80126 Napoli, Italy
{aniello.buonocore,luigia.caputo,enrica.pirozzi}@unina.it

The problem of first passage time is widely known as one of the most difficult matters in the theory of
stochastic processes, even if it plays a crucial role in various application contexts, i.e. in quantitative
finance, in theoretical biology, in engineering, in chemistry, in epidemiology.

In the context of the firing of a single neuron the membrane potential is often described by
means of a Gaussian diffusion process (IF, LIF, EIF models) whose excursion is limited above by
an absorbing barrier, called firing threshold, at attainment of which there is the emission of the so-
called action potential or spike. The shape of the stereotyped function describing the action potential
depends on each family of neurons. Here, considerable importance is given to the determination
of the distribution of the firing times, or alternatively, to the determination of its main statistical
indexes.

In this specific application, the problem of the firing time of a neuron can be even more compli-
cated than the underlying problem of the first passage time described above. In fact, even assuming
that, subsequently the emission of an action potential, the membrane potential is initialized, after a
fixed absolute refractory period, at a pre-assigned value, the time dependency of the deterministic
stimulus may cause different conditions for next evolutions towards the threshold firing.

It may then be useful to have methods to simulate the interspike intervals (ISIs). This can be
done, for example, by simulating trajectories of the membrane potential by means of numerical
methods suitable for the stochastic differential equations of diffusive type (see [1] and [2]), or
exploiting the underlying known Gaussian bridge distribution (see [3]). However, as the above
cited authors point out, it is necessary to evaluate the probability that a spike arises within each
interval of the temporal mesh before the time of the observed spike.

With this aim, in [2] the authors applied a Monte Carlo method, while in [3] via theoretical
considerations an useful bound is obtained.

We now propose the application of the simulation method based on the hazard function ([4])
that for the first passage time problem represents the related instantaneous rate: the ratio between
the probability density function and the survival function. For this purpose it would be known the
first passage time probability density function that is, unfortunately, the unknown desired function.
The method proposed by us is based on the use of the integral equation ([5], [6]), known in the
literature as the singularity removed probability current equation ([7]). According the available
computational facilities, one can use several methods to obtain suitable numerical approximations
of the required probability density.

Taking account that the application of the method of the hazard function can also lead to the
evaluation of the above density in times considerably larger than the integration step, the proposed
method is particularly operative when the hazard function tends, as time increases, to a constant
or a periodic function. We prove that it happens, asymptotically respect to the firing threshold, in
the case of the LIF model with constant or periodic stimulus. The same result is obtained in the LIF
model in which the time constant and the resting potential are substituted with appropriate time
dependent functions.

Keywords: Hazard Rate Method, Gauss-Diffusion Processes, Instantaneous Firing Rate.
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Interaural level difference (ILD) is one of basic binaural clues supporting the localization of a sound
source. Due to acoustic shadow cast by the head, deviation of a sound source from the medial plane
results in an increased sound level at the nearer ear and a decreased sound level at the averted
ear. In mammalian auditory brainstem, the ILD is evaluated by neurons in the lateral superior olive
(LSO), which receive excitatory projections from the ipsilateral side and inhibitory projections from
the contralateral side. As the sound level is encoded predominantly by neuronal discharge rate, the
principal function of LSO neurons is to estimate the difference between discharge rates of the two
inputs. Both psychophysical and neurophysiological studies in mammals have shown that the ILD
is assessed with a remarkable precision, the just noticeable differences (JND) ranging from 0.5 dB
to 4 dB [2]. Such a precision imposes severe requirements on precision of both sound level coding
and the ILD evaluation mechanism. Employing computer simulations and signal detection theory,
the current work explores the theoretical JNDs of ILD depending on various parameters of the input
spike trains and the evaluation mechanism.

The afferent inputs to the LSO may be either primary-like, preserving precisely the discharge
patterns in the auditory nerve, or choppers with regular rhythmic response [1]. These two types of
firing were modeled by a dead-time Poisson process with shifted exponential distribution of inter-
spike intervals (ISI), and a process with a uniform distribution of ISI, respectively. Only asyn-
chronous firing with no phase-lock to the stimulus waveform was considered.

The temporal variability of neuronal discharge patterns may be expressed using the coefficient of
variation (CV: standard deviation of ISI divided by mean ISI) or Fano factor (FF: spike count variance
divided by mean spike count over some counting interval). A higher variability of firing leads to a
lower precision of the rate code. Intuitively, if a repeated presentation of a given stimulus evokes
each time a different spike count, then to distinguish between two different stimuli, the associated
spike count change must be larger than the spike count variability.

The JND of ILD may be evaluated, e.g., by fixing the contralateral sound level and varying the
ipsilateral sound level. However, as the relationship between the sound level and the corresponding
discharge rates at the LSO input depends on many factors (such as auditory nerve rate-level function,
RLF), the current work does not evaluate the ILD itself, but the just noticeable changes of firing rate
of the excitatory LSO input. The corresponding ILDs may be estimated by considering that the slope
of auditory nerve RLFs is on average 5 spikes/sec/dB [3]. In the simulations, the theoretical JNDs
are evaluated using ideal subtraction of excitatory and inhibitory firing rates using a given counting
window.

The results show that the JND increases nearly linearly with increasing CV of the excitatory or
inhibitory input (see Fig. 1A), the distribution of ISI of the inputs does not play a role. The length
of the counting window ∆ strongly influences the JND. The longer the ∆, the smaller the JND,
explicitly, JND = K/

p
∆, where K is some positive constant. An analogous dependence may be

found between the JND and overall input firing rate. Given a constant CV of the inputs, the JND
grows with the square root of the input rates. This leads to a paradox that to keep the JND constant,
higher input rates must be accompanied by longer counting windows.

The above results hold for excitatory and inhibitory inputs each comprising a single random
renewal process with given ISI distribution and CV. As multiple excitatory and inhibitory fibers
may converge at an LSO cell, such situation was considered by modeling each input as a sum of
multiple independent random renewal processes with identical statistics. Importantly, despite that
the converging fibers are independent, JND decreases for an increasing number of fibers. Although
a sum of multiple non-Poisson processes has nearly an exponential distribution of ISI, the result
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Figure 1: JND depending of the excitatory CV and on number of converging fibers.

is not a renewal process and on longer time scales, it preserves the properties of the individual
component processes [4]. The simulations show that in the case of a renewal process, Fano factor is
proportional to the square of CV. However, if we sum up multiple processes each having CV=0.25,
the resulting CV quickly approaches 1, yet the resulting FF corresponds to the CV of an individual
component process (i.e., FF ∼ 0.252), leading to markedly lower JNDs. Furthermore, the summary
process is not renewal, hence the spike counts (and thus also the JNDs) obtained at the beginning of
the process are different from those obtained during the course of the process (see Fig. 1B), which
may have implications for ILD perception: JNDs of ILD may be lower when evaluated using short
tone pips than when using continuous signals.

Concluded, the lowest theoretical JNDs of ILD are similar or better than the experimental values.
However, the LSO cells hardly behave as an ideal detector; a certain worsening of JND is to be
expected. Given that the lowest excitatory and inhibitory CVs are approx. 0.2 and 0.7, respectively
[1, 3], then to attain the desired precision, the counting window should be at least 200 ms long, ca.
10 excitatory and 10 inhibitory fibers should converge at one cell, and the input firing rates should
be kept low. Furthermore, spike timing must be conveyed accurately from the auditory afferents to
the LSO.

Supported by projects M00176 "Elektronicko-biomedicinska kooperace" and "Podpora a individ-
ualni rozvoj perspektivnich akademickych pracovniku na VSPJ".
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Electric fish explore their environment using an electric organ discharge. The electric field is modi-
fied by the presence of nearby objects allowing the fish to identify different object attributes related
to their impedance, shape, position in the electric field, size and distance. This study is focused on
the early processing of electro-sensory images in the electro-sensory lobe of Gymnotus omarorum.

The electro-sensory lobe, the first neural relay of electro-sensory images, contains two different
sensory streams: the fast and the slow electro-sensory pathways. At the electro-sensory lobe the fast
electro-sensory pathway shows a single spiking onset neuron type whose intrinsic properties and
role in information processing was recently disclosed [1]. The slow path shows a complex circuitry
with several cell types [2]. The main output cells of the slow path are two types of pyramidal cells
differentiated anatomically by the presence or absence of a basilar dendrite. While basilar pyramids
are excited by the stimulus increase at the center of the receptive field, non-basilar pyramids are
inhibited [3]. The firing patterns of these cells in response to changes in electro-sensory stimuli as
well as the roles of this dual output of the electro-sensory lobe are still unknown in pulse gymnoti-
forms.

The aim of this study was to investigate the post-EOD probability pattern discharge of pyramidal
neurons in the chronically implanted, freely discharging and non-anesthetized fish. We found a
general pattern of discharge. There is an early silent phase, starting about 4 ms and lasting up to
12 ms after the EOD. This silent period is followed by the active phase lasting the rest of the inter-
EOD interval. Different firing modalities were distinguished in the phase histogram that usually
was bimodal. Histogram modes were characteristically timed and modulated up or down by local
signals allowing us to classify the recorded units according to their post-EOD firing pattern and
their response to the presence of conductive or non- conductive objects and global changes in their
environment (tube hiding).

Keywords: electrosensory system, unitary recording in freely moving fish, pyramidal neurons
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A central issue in computational neuroscience is to determine the way cortical activity originates
from the interplay between external stimuli and internal dynamics [1]. This is crucial to under-
stand how the brain combines external and internal sources of information to produce its functions.
In previous works, we begun the investigation of the effect upon cortical dynamics (as measured
by Local Field Potentials – LFPs) of the interplay between endogenous and exogenous rhythms
by studying the dynamics of recurrent excitatory and inhibitory integrate-and-fire networks, that
were stimulated with various types of dynamic external inputs arising from the thalamus [2, 3, 4].
We modelled LFPs because we focused on network-scale (rather than single cell) rhythms. These
rhythms are indeed more easily measured experimentally with LFPs, which include contributions
from different neural phenomena (expressing a wide range of frequencies) that are not easily
captured when recording extracellularly the spiking activity of small groups of neurons. In the
previous studies we found that, in agreement with experimental results [4, 5], low and high LFP
frequency bands expressed by our networks conveyed independent information about simulated
external stimuli with complex, natural-like temporal dynamics [2, 3]. The power of low frequency
(<10 Hz) LFP oscillations carried information about the corresponding low frequency components of
the simulated external input because the latter entrained the first, whereas the information carried
by the power of internally generated LFP oscillations in the gamma range (50-100 Hz) was about
the intensity of the simulated external input.

A limitation of our previous work was that it did not take into account the dependence of the
post synaptic current (PSC) on the membrane potential of the post synaptic neuron and that it
neglected certain types of sources of endogenous oscillations, such as adaptation currents that are
known to enable the network to display endogenous slow LFP fluctuations, potentially leading to
Up and Down states [6]. These limitations did not enable us to study the interplay between external
stimuli and certain classes of internal dynamics. Here, we present results obtained with a network
having the same architecture of the one studied in [2, 3], but with conductance-based neurons (in
which the PSC depends on the membrane potential of the post synaptic neuron) and pyramidal cells
displaying activity-dependent adaptation current.

We found that our conductance-based model was able to replicate several aspects of cortical
dynamics. In particular, it could replicate well the shape of field potentials, the dependence of
LFP information about visual stimuli upon the LFP frequency [5], and the cross-frequency coupling
between phase of slow oscillations and power of gamma oscillations. This suggests that the hypotheses
about the network mechanism generating slow (<10 Hz) and fast (50-100 Hz) information compo-
nents in LFPs, that arose from our previous models [2, 3], are robust enough to hold also in the
presence of more realistic conductance based synaptic dynamics.

The presence of an adaptation current [7] did not disrupt the gamma oscillation regime induced
in the network by sufficiently strong stimuli. Only when the ratio of the excitatory and inhibitory
input to the excitatory population was above a given threshold, the interplay between recurrent
excitation and adaptation current led to the presence of a dynamics resembling the Up and Down
states.
Keywords: Integrate and fire networks, Conductance based model, Local field potential oscillations
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Flies are known for their supreme flight maneuverability that is facilitated by their highly special-
ized flight apparatus. In the fruit fly Drosophila melanogaster, the wing motion is modulated by the
activity of a group of around 18 miniscule steering muscles at the base of each wing. Our study
is motivated by the hypothesis that a small number of muscle co-activation synergies gives rise to
the changes in wingbeat responsible for flight maneuvers. Complementary to existing electrophys-
iological studies of selected muscles, our approach is to study the neuromotor control mechanism
of the flight apparatus as a whole. We have developed a statistical method based on independent
component analysis [1] to classify the wing motion patterns of the fruit fly during tethered flight.
This method identifies components of the wing motion that are maximally statistically independent
of each other; such components may be viewed as the basic neuromotor flight control modes.

Wing motion of tethered flying flies was recorded using a high speed computer vision system
(TrackFast, SciTrackS.com) [2]. Angular positions of the two wings at 12 equispaced phases of
the wingbeat cycle were considered as 24 separate time series and analyzed using independent
component analysis (ICA). Out of the 24 least dependent components obtained from each test, only 6
to 8 were found to have a non-flat spectral density (Wiener entropy below 0.8), while the remaining
components had the characteristics of broad-band noise. Thus, the wing beat variability during a
segment of tethered flight is composed of only a few types of mutually independent characteristic
variations.

Our present study focuses on variations that we found repeatedly in test flights of individual flies
and between flies. These variations were reproduced even when only 2 phase points per wing (the
dorsal and ventral reversal angles of each wing) were considered as 4 input signals for the ICA. Each
test flight was analyzed in segments of 2500 wing strokes, and components represented by similar
linear combinations of the four signals in distinct segments were clustered. Clusters from different
test flights and from separate flies were then grouped based on the characteristic properties of the
dominant variations in their elements (Fig. 1).

Three distinct groups of least dependent components were obtained. Components in the first
group were dominated by sharp features at a time scale of 40 to 70 wing beat cycles and had almost
no correlation (< 0.2) with wing beat period. During these events, the ventral reversal angle of
one wing decreased, while that of the other wing increased (Fig. 1). Such a change corresponds to

19



Figure 1: Example of mutually independent wing variations. a) Time course of ICA components
belonging to two distinct groups. Events 1 and 2 mark two intervals, in which variation corresponding
to one of the components occurs exclusively. b) Mean wing trajectory during events 1 and 2. Dashed
lines show wing trajectory averaged over 2000 cycles.

the well-known fast turning maneuvers of flies during free flight, called body saccades [3]. Compo-
nents in the second group have period-correlated (> 0.45) variations at a time scale of 200 to 500
wing beat cycles (Fig. 1). These events comprised bilaterally symmetrical alterations of wing beat
amplitudes, corresponding to a lift maneuver during free flight. The third group of components was
obtained from the difference of dorsal reversal angles and had no identifiable characteristic time
course. The first two types of variations were occasionally found to occur simultaneously and ICA
resolved them as distinct components. In conclusion, our findings suggest that the muscle synergies
that generate lift and saccade maneuvers operate independently from each other.

Keywords: Flight control, muscle synergy, independent component analysis.
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Frequency modulation (FM) is an important building block of complex sounds including speech
signals. Mechanisms on neural processing of complex sounds remain largely unclear. Attempts
have been made to predict neural responses to complex sounds using various computer models, but
often without much success especially targeted at the higher levels of the auditory pathways [1, 2].
The failure is generally attributed without to ‘non-linear’ properties of the central circuits [3].
We had previously reported that such unsatisfactory results are partly due to the lack of knowl-
edge on the complexity of trigger features [4]. When the trigger features are better delineated
and incorporated into the model, performance would usually improve [5]. Here, we attempt to
model auditory neurons with multiple trigger features. Single spike activity was first recorded from
midbrain auditory neurons of anesthetized rats in response to a battery of sounds (random FM
tones of different carrier frequencies and different modulation profiles). We then applied spike-
trigger averaging to extract the raw trigger features which were further segregated into individual
components following a scheme of ‘progressive thresholding’ and ‘spike de-jittering’ algorithms we
have developed earlier [6, 7]. We then carefully grouped the peaks in peri-stimulus time histogram
of the spike response to FM sound in accordance with the trigger features and simultaneously taking
into account of the performance of trained artificial neural network in predicting the response. The
artificial neural network is a finite impulse response artificial neural network of simple architecture
(1-1-1). Separate modeling of groups of peaks was subsequently performed. Results showed that
such approach of separate modeling provide satisfactory prediction of FM response to modulation
envelope unknown to the trained model. Our findings are in support that trigger features are likely
more important than non-linearity in successful modeling at least for some FM-sensitive neurons in
the auditory midbrain.
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The present study aimed to create a direct bridge between peripheral and central responses to
odorant mixtures and their components. Three experiments were performed using mixtures of
fruity (isoamyl acetate, ISO) and woody (whiskey lactone, WL) odorants known to contribute to
some of the major notes in Burgundy red wine. These experiments consisted of (i) calcium imaging
of human embryonic kidney cells (HEK293T) transfected with olfactory receptors (ORs); (ii) single-
unit electrophysiological recordings from olfactory receptor neurons (ORNs) and analyses of electro-
olfactogram (EOG) responses in the rat nose in vivo; and (iii) psychophysical measurements of the
perceived intensity of the mixtures as rated by human subjects.

The calcium imaging and electrophysiological results revealed that ISO and WL can act simulta-
neously on single ORs or ORNs and confirm that receptor responses to mixtures are not the result
of a simple sum of the effects of the individual mixture compounds. The addition of WL to ISO
principally suppressed the ORN activation induced by ISO alone and was found to enhance this
activation in a subset of cases. In the human studies, the addition of high concentrations of WL to
ISO decreased the perceived intensity of the ISO. In contrast, the addition of low concentrations of
WL enhanced the perceived intensity of the fruity note (ISO) in this mixture, as it enhanced EOG
responses in ORNs.

Thus, both OR and ORN responses to ISO+WL mixtures faithfully reflected perceptual response
changes, so that the odour mixture information is set up since the peripheral stage of the olfactory
system.

Keywords: Odour coding, odour mixture, olfactory receptors, olfactory receptor neurons
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Human auditory evoked potentials especially recorded intra-cranially especially over the superior
temporal cortices are valuable in understanding neural coding of speech sounds. Such electrical
recordings from the temporal cortex are usually obtained from consent neurosurgical patients under-
going investigatory procedures during short stays in the hospital [1]. Consequently, datasets obtained
from these subjects are of limited sample size. To extract the auditory evoked responses from
such small samples, the conventional ensemble averaging often fails to suppress the relatively large
ongoing background EEG activity over the association auditory cortices where large inter-trial vari-
ations in response could occur, likely related to the fluctuation of attention during experiment [2].
Effective methods to extract evoked potentials especially on single-trial basis are therefore impor-
tant. Here we applied the technique of adaptive filter [3] to extract the stimulus-evoked single-trial
potentials at the superior temporal cortices recorded with chronically-placed surgical grid electrodes.
We found that the method was able to successfully extract single-trial evoked potentials in the face
of large inter-trial variations in both response amplitude and latency. Furthermore, we found an
apparent gradient of inter-trial variability and response latency from dorsal to ventral, and from
posterior to anterior aspects over the superior temporal cortices. This gradient appeared to be
related if not extended from a similar gradient along the long axis of the nearby primary auditory
field. Based on the extracted single-trial evoked response, subtle differences could be detected when
two sounds sharing similar spectral property but different temporal property (e.g., fast-slow versus
slow-fast FM tone) are presented in the same session. Greater differences are detected for sounds
with greater spectral and temporal disparity (e.g., clicks versus AM tone). Similar findings were
also observed with the gamma band responses to sounds at the same recording locations. Results
are consistent with the notion that inputs to the various cortical fields could be segregated to some
extent for effective processing of the complex sounds. Depending on the acoustic property of the
stimulus sounds, the underlying neural processing could take place on similar or different areas of
the superior temporal cortices.
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Diffusion approximation of neuronal models revisited
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Stein’s neuronal model with reversal potentials (see [1]) has number of diffusion approximations,
each depending on the form of random amplitude of excitatory, resp. inhibitory postsynaptic poten-
tials (see [2, 3]). Probability distributions of the first passage time and of the steady state value
of the membrane potential in the original model and its diffusion approximations are numerically
compared in order to find which of the approximations is the most suitable one. Importance of the
properties of the random amplitudes of postsynaptic potentials is discussed. It is shown on a simple
example that quality of the approximation depends directly on them.
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Since spikes have very short duration, counting processes are commonly used as probability models
of spike trains. Aiming to include the neuronal refractory period and to describe properties of spike
trains, various authors follow an approach based on the assumption that the non-homogeneous
Poisson process describing the number of neuronal firings has a conditional intensity function
expressed as product of the free firing rate function and a suitable recovery function; see Berry and
Meister (1998), Johnson and Swami (1983), Kass and Ventura (2001), Miller (1985), and, more
recently, Chan and Loh (2007). Such model is based on a point process N(t), t ≥ 0, which denotes
the number of spikes of a single neural unit in the time interval [0, t], and on the following condi-
tional intensity function:

λ(t |τ1,τ2, . . . ,τN(t)) = lim
δ↓0

E[N(t +δ)− N(t) |τ1 < τ2 < . . .< τN(t)] a.s.

In order to include the effect of the refractory period, the above authors proposed the Markovian
model in which the conditional intensity function has the following form:

λ(t |τ1,τ2, . . . ,τN(t)) =

¨

s(t), if N(t) = 0,
s(t) r(t −τN(t)), if N(t)≥ 1,

where s and r are non-negative functions, s being known as the free firing rate function and r as the
recovery function, and where τ j is the j-th spike time.

We purpose to extend the above model to the case of a network of excitatory neuronal units,
where the recovery function of the conditional intensity function of the i-th unit depends on the last
spiking unit. A suitable choice of the recovery function allows to include the effect of the refractory
period and the interactions among the neurons of the network.

In the special case of a network formed by two neurons characterized by constant free firing rate
s(t) = λ, we evaluate the probability that a spike of a generic unit, occured at a generic instant, is
followed by a spike of the same unit. The special form of the recovery function yields that the spiking
activity of the network is described by a Poisson process with intensity λ. We finally investigate

(i) the distribution of the number of spikes that occur in [0, t] and that are followed by spikes
of the same unit,

(ii) the distribution of the index of the last neuron firing in [0, t].

Keywords: Neuronal network, Free firing rate function, Recovery function.
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Stochastic leaky integrate-and-fire models are popular tools to describe the stochastic fluctuations in
the neuronal membrane potential dynamics due to their simplicity and statistical tractability. They
have been widely applied to gain understanding of the underlying mechanisms for spike timing
in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein-
Uhlenbeck process is popular, but also other models like the square-root model or models with a non-
linear drift are sometimes applied. However, experimental data show varying time constants, state
dependent noise, a graded firing threshold and time-inhomogeneous input, and higher dimensional,
more biophysical models are called for.

The stochastic Morris-Lecar neuron is a two-dimensional diffusion which includes ion channel
dynamics. We study the firing mechanism in the model as well as in experimental data from a spinal
motoneuron, and relates it to a leaky integrate-and-fire model.

The talk is based on joint work with Patrick Jahn, Rune W. Berg, Jørn Hounsgaard and Priscilla
Greenwood.
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Neurology and neuropsychiatry are for long facing a great duty and challenge: Detect as early as
possible pathological states, follow their evolution with or without treatment and assess the success
of the latter. This means to identify and further detect specific global, regional or local brain states
which further implies to develop techniques allowing to explore functional brain connectivity in the
least invasive way. Scalp EEG is the least invasive electrophysiological tool whose resolution seems
too low to discriminate any states but the most global like wakefulness, sleep stages etc.

This hold true when considering visual inspection and linear signal analysis. This might not be true
with the use of third order cumulant analysis of the electrophysiological recordings used to measure
the phase-coupled frequencies corresponding to non-linear coupling of spectral frequency compo-
nents, somewhat analogous to frequencies of resonance [1, 2]. Frequency pairs corresponding to
bispectra peaks different from zero were tested for bicoherence. The sum of the two frequencies
in each pair defined the frequency of resonance [5]. Bispectral analysis, a non linear signal anal-
ysis method which detect interactions between pairs of signals with frequency and phase locking
such as two different generators G1 and G2, generating frequencies F1 and F2, generate together a
third one, called harmonic, which is the sum or difference of these two frequencies (F3 = F1+ F2
or F3 = F1 − F2) with a similar phase relationship (φ3 = φ1 + φ2 or φ3 = φ1 − φ2). These
harmonic components indicate a kind of cross modulation of the G1 and G2 signals called quadratic
phase coupling (QPC) and indicate some mutual interaction of the G1 and G2 generators (groups
of neurons).

We used bispectral analysis to assess the follow-up of cognitive-behavioral therapy of patients affected
by primary insomnia [3]. This analysis was able to characterize very well sleep stages and could
also be used to discriminate normal and pathological brain states, such as epilepsy [4]. The aim
of the current study is to extend further the investigation of bispectral analysis for assessing sleep
disorders and to reveal more basic mechanisms related to sleep neurophysiology.

We examined the EEG of 7 patients having a confirmed obstructive sleep apnea syndrome with
daytime sleepiness and therefore possible microsleeps (MS) while in relaxed resting position. Microsleeps
were recorded during a maintenance wakefulness test (MWT) consisting of 4 sessions of 40 min.
every two hours. Patients were told to rest relaxed, without sleeping, in the comfortable arm-chair
of a quiet and dark room. MS scoring was done visually according to general literature, i.e. with
the complete disappearance of alpha rhythm on frontal, central and occipital derivations, and the
apparition of theta rhythm. lasting at least 3 s and no more than 14 s. Patients were further divided
in 2 groups for comparison: Big Microsleepers (BM) with more than 40 MS (2 patients) and Small
Microsleepers (SM) with less than 20 MS (5 patients).

We analysed and compared the 10s EEG segments (AA) preceding MS onsets with the full MS (MA)
segment. We also compared the 3 first seconds of MS (M1) with the 3 segments of 3 s (A1, A2, A3)
immediately preceding the MS onset. In order to be reliable, bispectra must be estimated over a
number of epochs greater than the number of samples of a single epoch. As we used 1s epochs with
a 200 Hz sampling rate one needs at least 200 epochs to detect significant QPCs. As the number of
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MS is to low for reliability we assume that the QPC content do not change much over a 3 epoch long
segment, thus multiplying the number of epochs by three. Even with this assumption the number
of epochs remains too low. By further assuming that patients share common QPC features when
similarly related to MS onsets, we pooled all MSs of each group of patients as if they where issued
by a single patient. This concatenation of event related data segments from subjects of a given group
allow to ensure a low variance while hopefully enhancing the common features of this group.

To compare the BM synthetic subject with the SM one (the control) we compared their MS segments
with each of the pre-MS in the frontal (Fr), central (Cr) and occipital (Or) regions as these later
do not "compute" the same kind of information. These comparisons were made by running a
Kolmogorov-Smirnov test (with p < 0.01) between distributions of the harmonic frequencies of
the detected QPCs, both for auto (aF3) and cross (xF3) bispectra.

For all regions and for both aF3 and xF3, the M1 vs. MA and the A1 vs. AA comparisons showed
no differences for SM and systematic differences for BM, indicating dynamic changes of the AA
and MA segments in the BM subjects. Both for aF3 and xF3, SM and BM subjects did not differ at
all in Or for all segments and only for A1 in Fr and Cr indicating a weak, if any, involvement of
occipital region and the first pre-MS segment in all regions. The Fr-Cr comparison showed a SM-BM
difference only for A3 with aF3, whereas the Cr-Or one differed for A3 and E1 only for xF3. The
Fr-Or SM-BM difference exists for A1 and AA both for aF3 and xF3 with the additition of A3 for xF3.
Other analysis like the IRF (index of resonnant frequencies) [3] were made to evaluate the low-high
frequency relationships and structures in bispectral QPC harmonics.

In conclusion, our results indicate that Big Microsleepers represent a specific population and open a
way to higher topographical and time resolution bispectral studies to better understand microsleep
and other brain states.

Keywords: quadratic phase coupling, microsleep, bispectrum.
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A population of adapting neurons encodes a time-dependent input in the instantaneous firing rate
of the population (spike count in a small window averaged across the population), a quantity which
we call ’population activity’. In this talk, I present a novel analytical expression of the population
activity, show how coding and decoding is possible, and relate population activity to measured
dynamics of individual neurons.
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A possible approach to study how the brain encodes information to the activity of neural popula-
tions deals with concepts from information theory. In this framework the quantity of interest is the
information about a given stimulus contained in the neural response. In particular mutual informa-
tion between the stimulus and the response gives a measure of the gained information about the
stimulus obtained by knowing the response. It is a quantity that measures the mutual dependency
of two variables taking into account both linear and non linear correlations.

From a statistical point of view the direct estimation of mutual information is difficult. Firstly,
the joint stimulus–response distribution requires a prohibitive amount of data and usually any real
experiment only yields a finite number of trials, see [1, 2, 3]. A different approach is the so
called “binless” strategy that allows an estimation of the information without relying on response
discretization into a “binary” word using bins of finite temporal precision [4, 5, 6].

We propose here a new and simple estimator for the mutual information. We rely on the equa-
tion that links the entropy of the copula (dependence structure) and the mutual information of
two random variables [7]. Hence the problem is reduced to the estimation of the entropy, once
the sample is suitably transformed. The properties of the new estimator are illustrated through
simulative examples and performances are compared to the best estimators in the literature.

Keywords: Information Theory, Mutual Information, Estimation.
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Natural vision is structured into brief episodes of fixation, separated by rapid gaze shifts, called
saccades. Nearly all animals with a sense of vision perform such saccades, either by movements of
the eyes or of the head and body [1]. The saccadic nature of vision provides a strong spatio-temporal
structure to visual stimuli that impinge on the retina: brief presentations of nearly stationary images
are separated by rapid global motion signals. Under laboratory conditions, however, visual systems
are often studied with stationary stimulation or simple light flashes.

In the retina, the global motion signal that occurs during a saccade has been shown to cause bursts
of activity in some neurons [2] while suppressing activity in others [3]. Moreover, the beginning
of a new fixation after a saccadic motion is often marked by bursts of activity that are particularly
informative about the newly fixated image [4]. Yet, little is known about how neurons in the retina
encode specific stimulus features in the presence of saccades.

To better understand the neural code of the retina under saccadic stimulus presentation, we performed
extracellular recordings of spiking activity in isolated retinas of salamander and mouse. We used
multi-electrode arrays to record spikes of retinal ganglion cells while stimulating the retina with
images that were projected onto the photoreceptor layer and shifted in a saccade-like fashion.
Specifically, we asked how the observed spiking responses depended on the image prior to the
saccade, on the image after the saccade, and on the transition between the fixated images.

For both salamander and mouse, we found that many of the encountered cells defy the picture of
simple stimulus filters that is commonly used to describe the function of retinal ganglion cells, based
on investigations with simplistic or stationary visual stimuli. Instead, a large fraction of cells show
highly nonlinear response properties. Furthermore, they encode the transition from the image prior
to the saccade to the new image rather than the new image by itself. In the salamander retina,
we found many cells that transfer information about the image transition in a precise spike-timing
code, similar to previous observations for flashed images [5]. By systematically varying the saccade
characteristics, we were able to disentangle the contributions of the new image, the previous image,
and the motion trajectory to the generation of the response.

For mouse retina, we found a more diverse picture of response patterns and classified these into
several distinct types. While some cells responded primarily to the spatial structure of the newly
fixated image, other response types could be characterized as detectors of change or similarity in
fixated images across the saccadic transition. These response types have an intrinsically nonlinear
nature and cannot be captured by standard receptive field models. Rather, the findings suggest that
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the saccadic image presentation triggers specific circuit elements that provide different cell types
with characteristic response features of potentially high behavioral relevance.

Keywords: retina, saccade, neural code.
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A common interest in electrophysiological studies is synchrony among neurons under several condi-
tions, such as different kinds of stimuli. In this work we present a synchrony measure that can
be easily adapted to different firing rates scenarios. Usually, synchrony measures are based on 1-1
matches along binned trains [3][4][2]. Our method is based on the time elapsed between spikes of
the different trains, thus no binning is required. This method is flexible enough to work in low firing
rate scenarios such as spontaneous activity. In some experimental settings, getting many record-
ings of one group of neurons is very difficult or impossible. The proposed method can be used to
measure the synchrony with small amounts of trials. We discuss tests to determine (1) whether
the synchrony observed is due only to chance and (2) whether there exist differences in synchrony
between experimental conditions.

Consider two neuronal recordings described by the counting processes {Ni(t), t ∈ [0,∞)} for neurons
i = 1,2 and let X i j , j = 1, . . . , Ji be the time points where neurons fire. Define de Inter Neuronal
Nearest Spike Intervals (INNSI) as the time that elapses between the spikes of one neuron and the
closest spike of the other neuron. Let nδ be the frequency of INNSI smaller or equal to δ, where δ
can be chosen by the researcher according to the problem. Let n̄δ be the frequency of the INNSI that
are larger than δ. We define the INNSI-based Synchrony Estimator (ISE) as:

ISE =
nδ

nδ + 2n̄δ

This is just the proportion of INNSI that are smaller than δ in the total amount of INNSI, giving
double weight to the ones that are greater than δ.

The ISE can be assumed to be time dependent by applying the function on sliding windows. At time
t, spiking activity in a window of length 2v is used. Controlling v, low firing rate is outweighed by
the use of neighborhood activity in the estimation of nδ at time t: nδ(t, v).

We propose the use of binomial Generalized Additive Models (GAM) [5]. Since the ISE estimator
can be regarded as the success probability for an event INNSI< δ, the ISE measure can be estimated
via the use of a Binomial process, nδ ≈ Binomial(n,πδ). An autoregressive term in the parametric
part is suggested to account for dependence between responses at consecutive time points. Time
should be considered as a covariate in the smooth terms together with any other covariates under
study.

To make sure that the proposed synchrony measure is not driven by firing in proximity just by
chance, we compare the method with the theoretical synchrony expected under independence of
spike trains. Also, a bootstrap procedure is proposed to build confidence bands for the predictions
of the GAM model. These confidence bands can be used to test different hypothesis [8].

The data used to exemplify the use of ISE was provided by the NEUROcom Group of the Univer-
sidade da Coruña. The spike trains were recorded simultaneously in the primary visual cortex of
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an anesthetized cat. Recordings were made under spontaneous activity and two types of electrical
stimulations were carried out. These stimulations were made in two areas of the brain that module
the wake-sleep cycle: the brainstem (bs) and the forebrain (bf) [7][1][6]. When stimulating these
areas, a wake-like state is induced and then the sleep-like state is gradually recovered. We study
synchrony of a pair of spike trains under the two stimulation conditions. Firing rates are very low
through out the experiment and only three trials of each condition are available.

The best GAM was selected using the AIC criterion and was used to build confidence bands and test
the following hypothesis:

- H1
0 : πA

δ(t) = π
0
δ

for every t after the condition onset. Here, π0
δ

represents the baseline
synchrony before the stimulus. A similar hypothesis can be formulated for condition B.

- H2
0 : πδ(t) = π0, where π0 stands for random synchrony.

- H3
0 : πA

δ(t) = π
B
δ(t). With this test we aim to detect differences in the synchrony profile

induced by the experimental conditions.

Results show significant differences between baseline synchrony and under stimuli (H1
0). Regarding

H2
0 we found that encountered synchrony is almost all the time higher to that theoretically expected

under independence. Finally, differences between synchrony under the different conditions are
found significant after stimulation while they are not so before stimulation.

Keywords: bootstrap, generalized additive models, spike train, synchrony.
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Most neurons in primary visual cortex (V1) have an orientation selective response. This is true
for animals such as cats and primates, in which V1 has an orientation map [1], as well as for
animals without such a map, e.g. rodents [2]. The mechanism for orientation selectivity (OS)
remains a matter of debate. Whether selectivity is primarily due to feedforward connectivity or to
recurrent interactions has not been settled. If the mechanism is primarily feedforward, the presence
or absence of an orientation map hardly matters, but if recurrent interactions are important the
spatial organization of preferred orientations could affect the mechanism. Theoretical studies of OS
have, up to now, focused on models of V1 with orientation map. The proposed recurrent mechanisms
rely on the fact that, with a map, neurons mostly receive recurrent connections from cells with
similar preferred orientations [3].

The connectivity in V1 without map is hotly debated [5]. Unclear is whether connections depend
on the difference in stimulus feature preferences. With such a preference, the distributions of orien-
tations of cells projecting to a neuron would be similar to that in cortices with a map and the same
mechanism could operate. In contrast, when connectivity is independent of difference in preferred
orientation, this distribution is flat. How can orientation tuning arise in this case? Here we argue
that OS arises naturally in V1 without feature dependent connectivity if it operates in the balanced
regime. To this end, we consider a network consists of an excitatory and an inhibitory popula-
tion of randomly connected neurons with, on average, K recurrent inputs from each population.
The strengths of the recurrent connections are of order 1/

p
K . Neurons also receive a feedforward

input, with an untuned part of order
p

K and a random orientation dependent part of order 1. Feed-
forward input, total excitatory and total inhibitory feedback are all much larger than the rheobase.
Nevertheless neurons fire at a reasonable rate because the net feedback approximately cancels the
feedforward input. Because of the connectivity, the total excitatory and inhibitory feedback are
almost untuned. As a result, the untuned part of the feedforward input is approximately canceled
by the feedback, but its much smaller tuned part is not. This results in an output of the cells with
significant orientation tuning. The heterogeneity in tuning curves is large. Our study predicts that
the average voltage of the neurons, relative to rest, shows clear orientation tuning, but the size of
the voltage fluctuations are orientation independent.

Recent experiments have investigated the effect of manipulating the activity of subsets of GABAergic
interneurons on the response of primary visual cortex (V1) of mice. Atallah et al [7] optogenetically
suppressed or stimulated parvalbumin expressing (PV) interneurons. For physiologically reasonable
changes of the PV activity, the amplitude of the Pyramidal (Pyr) cells response was modulated by
a factor 0.7–1.2, upon visual stimulation. Yet, both the orientation tuning and the shape of the
contrast response function were largely unaffected. It was also shown that manipulating the PV cell
activity modifies the inhibitory synaptic input into the Pyr cells, but does not significantly change
their excitatory input upon visual stimulation. What do the recent optogenetic experiments tell us
about the V1 network? The fact that manipulating the PV input affects the Pyr activity, but hardly
changes the excitatory input into these cells, implies that the recurrent excitation is weak. We show
that this increases the selectivity of the Pyr cells. Because the E-E connections are weak, for the
input into the Pyr neurons to be balanced, their recurrent inhibition just cancels the feedforward
excitation. Thus, if the network consisting only of Pyr and PV neurons, it responds to changes in
the external input into PV cells by changing the Pyr activity in such a way that E to I input must just
cancels the extra feedforward input into the PV cells, leaving the PV firing rate unaffected. Hence,
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to account for the effect of optical stimulation on the PV activity the presence of a second inhibitory
population is essential. With two inhibitory populations in the model we can account for the exper-
iments. Activation/suppression of the PV activity leads to a multiplicative increase/decrease in the
response of the Pyr neurons. Furthermore, as in the experiments, this change in the gain of the
Pyr neurons leaves their tuning properties unaffected. Finally we argue that the second inhibitory
population can be identified with the somatostatin expressing interneurons. Indeed, we show that
this population is more sharply tuned than the PV cells.

Very recently, Chen et al. [6] measured calcium signals in spines on pyramidal neurons in layer
2/3 of the mouse auditory cortex. They found that inputs to neighboring spines are tuned to sound
with very different preferred frequencies. Nevertheless, the responses of the neurons are sharply
selective to frequency. The ideas developed in this work can readily be extended to explain strong
selectivity in primary auditory cortex or indeed other sensory cortices.

Part of this work has been published in [8].

Keywords: Neuronal networks, balanced state, interneurons.
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Oscillations constitute an ubiquitous aspect of neural dynamics. Their cognitive as well as behavioural
correlates have been extensively studied at different levels of brain organisation. Numerous reports
discuss the relevance of these rhythms in the context of working memory tasks (for review, see
Klimesch, 1996; Benchenane et al., 2011), perceptual processes (e.g. Tallon-Baudry, 2009; Romei
et al., 2010), attentional modulation (for review, see Benchenane et al., 2011) and early sensory
processing (for review, see Koepsell et al., 2010). Despite extensive research effort, the under-
standing of the origins and mechanisms underlying these cognitive correlates of theta to gamma
oscillations is limited.

In our attempt to study functional aspects of the cortical oscillatory activity, a computational
modelling approach was adopted to examine a hypothesis that memories, either evoked by external
stimuli or activated as a result of internal processing, are manifested as distributed cell assemblies
oscillating at gamma-like frequencies with lifetimes within a theta scale. To this end we continued
to investigate a meso-scale attractor network model (Lundqvist et al., 2006) allowing for the exam-
ination of oscillatory phenomena as an emergent feature of neuronal activity and, most impor-
tantly, as a correlate of the network’s functional states in simulations of two memory paradigms:
stimulus-triggered memory recall and multi-item working memory maintenance by periodic replay
(cf. Fuentemilla et al., 2010). This biophysically detailed cortical model of cortical layer 2/3, oper-
ating in bistable mode, has previously been shown to faithfully reproduce single cell firing statistics
(Lundqvist et al., 2010) and qualitative effects of modulation of the synchronous population activity
in working memory as well as long-term memory tasks (Lundqvist et al., 2011). The focus here was
on investigating spatially dependent coherence within distinct frequency components of the synthe-
sised local field potentials as well as cross-frequency interactions, specifically nested oscillations.
The nesting phenomenon has been mainly reported as coupling between the amplitude of gamma
and the phase of theta rhythm in experimental work on sensory and memory systems (Chrobak and
Buzsaki, 1998; Lakatos et al., 2005; Tort et al., 2008). In the model, the same nested hierarchy of
gamma (25-35 Hz) and theta (2-5 Hz) rhythms was shown to arise during activation of memory
patterns (coding attractor state) in the two simulated paradigms. Additionally, 10-Hz alpha rhythm
emerged as part of this nested hierarchy when memory retrieval was triggered by a stimulus. The
activity in the gamma band was associated with selective activation of local neural subpopulations
and the 10-Hz rhythm appeared due to heterogeneity of excitability within these subpopulations.
Theta was correlated with coordinated activation of more globally distributed assemblies consisting
of several such local subpopulations. The network also exhibited idling activity manifested as an
upper alpha/lower beta rhythm (15-25 Hz) in the absence of nested oscillations during a non-coding
state, thus reflecting the readiness to process input.

In conclusion, the model was demonstrated to be consistent with the concept that gamma oscil-
lations are a manifestation of local computations while theta oscillations reflect the activation of
global, distributed assemblies. We hypothesise that the dynamics of coherent theta constitute an
important aspect of the formation and replay of the encoded memory items. Finally, it should be
mentioned that this computational study has been, to the best of our knowledge, the first attempt to
explore the rich oscillatory dynamics with spatial aspects of coherence and synchronisation patterns,
and cross-frequency effects emerging in a biophysically detailed model with strong commitment to
functionality.
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Odorants in natural environments are dominated by multi-ligand mixtures and their blends, many of
which are composed of a large and complex variety of chemical components. Some of the most chal-
lenging directions in the olfactory research to date have involved the problem of coding, processing
and, ultimately, perception of odour mixtures in the olfactory systems. Despite intensive investiga-
tions pursued at a wide range of levels ranging from molecular, electrophysiological to psychophys-
ical and psychological, there is still a plethora of open questions and debatable hypotheses. We
adopt a different approach to studying the mammalian olfactory system and attempt to understand
general principles of olfactory information processing by constructing a large-scale computational
model. The key objective of this contribution was to propose a neural mechanism underlying cortical
segmentation of odour mixtures and study its functional implications.

Since we treated the system holistically, besides the olfactory cortex (OC) our model encom-
passed the first and the second stages of mammalian early olfactory processing. Olfactory stimuli
patterns, both single- and multi-ligand odour objects, were synthesised and their processing in the
olfactory epithelium (OE) was simulated in the form of activations of olfactory receptor neurons
(ORNs), modelled as graded units with sigmoidal response characteristics (Rospars et al., 2000). To
ensure a satisfactory level of biological plausibility of the model, the distribution of ligand-olfactory
receptor (OR) affinities was generated to account for key statistical features of widely reported
olfactory response patterns to naturalistic odour stimuli (e.g., Hallem and Carlson, 2006; Yoshida
and Mori, 2007). The process of mixing odour molecules modelled at the OR level complied with
one of the most predominant hypoadditive syntopic interaction type (Rospars et al., 2008). The
resulting static rate-based codes were then processed in the reduced model of the olfactory bulb
(OB). OB computations were performed within the modular structure of glomerular columns and
the transformation of the primary to the secondary odour representation followed a novel interval
concentration coding scheme (Sandström et al., 2009). Self-organization of the feedforward connec-
tivity from the OB to the OC based on statistical properties of synthetic olfactory stimuli with the
support of synaptic plasticity provided the capacity for generating sparse and distributed cortical
representations (Benjaminsson et al., 2010). The OC model, which handled odour recognition
functionality lying at the heart of this study, was implemented in the framework of an associative
attractor network with modular architecture and sparse recurrent connections trained with Hebbian
plasticity. The proposed odour mixture segmentation mechanism was based on the neural adapta-
tion phenomena at the level of cortical units.

The network was first trained to perform concentration invariant identification of single-ligand
odours. A range of different training scenarios were implemented to mimic various psychophysical
experimental conditions. In the evaluation stage the olfactory system model was exposed to mixtures
of two up to five ligands and the segmentation performance was analysed analogously to classical
behavioural studies (Laing and Francis, 1989; Livermore and Laing, 1998). In consequence, we
managed to reproduce some qualitative psychophysical effects reported in the context of olfactory
perceptual learning (Wilson and Stevenson, 2003), e.g. impeded segmentation capability at low
concentrations (Duchamp-Viret et al., 1990), correlation between a so-called glomerular overlap and
mixture perception (Frederick et al., 2009) or a profile of the performance drop with an increasing
number of odour components (Laing and Francis, 1989) among others. In a broader perspective,
the results obtained in this computational study pave the way for a discussion on mechanistic origins
of a wide range of perceptual phenomena observed in mixture segmentation. Finally, it should be
emphasised that the holistic modelling approach adopted here facilitated insights into the impact
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of early olfactory coding, stimulus representations and the system dimensionality on the odour
recognition performance.
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There are many background oscillations in a brain, in particular those having frequencies in the theta
and gamma bands. An interesting question is what these background oscillations might enable an
array of neurons to do. To investigate this question, we consider the same question for an array
of oscillators, each of which is based on a heuristic for the Hodgkin-Huxley system. The array is
initialized in some configuration of states, which is referred to here as being an image. We show
that the background oscillations may provide energy to stabilize the initial image, and it will persist
until a new image is presented to the array or until the background oscillation is removed or its
frequency content is changed. A computer simulation of this phenomenon is presented.
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In order to understand the information processing in the brain, the information channel capacity[5]
is an important quantity. Since a fundamental information processing in the brain is the information
transfer through a single neuron, some attempts have been made to compute the capacity of a
single neuron[3, 6]. However, some of the results range much larger than measurements[1], or
lacks mathematical proof. The computation of the capacity is not simple because it depends on
various issues, such as the stochastic characteristics of the communication channel and optimisation
over input distributions. We have considered two different models, the temporal coding, and the
rate coding, and computed the capacity for each of them[2]. We have employed a spiking neuron
model that the ISI follows a gamma-distributed random variable, where the shape parameter κ is
fixed and the scale parameter θ varies over time. Theoretical studies prove that the distribution
of inputs, which achieves the channel capacity, is a discrete distribution with finite mass points for
temporal and rate coding under a reasonable assumption. The proof follows the steps firstly shown
by Smith[4]. This allows us to compute numerically the capacity of a neuron. Numerical results are
in a plausible range based on biological evidence to date.

Keywords: Information capacity, spiking neuron.
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We aim to estimate structural parameters (the coefficients) of a stochastic leaky-integrate and fire
neuronal model given only data for the interspike intervals (ref. [4, 5, 3]). Building on the Fortet
Integral Equation method introduced for this problem in [2] and the classical Fokker-Plank equation,
we extend the methods to the case of a time-dependent drift, in particular a sinusoidal term with
unknown amplitude, a situation common for sensory neurons [1].

Thus the voltage trajectory, X , is assumed to follow the following trajectory (in non-dimensional
form):

dXs = (α− Xs + γ sin((s+φ)))ds+ β dWs. (1)

until X hits a threshold at which time a spike is recorded and X is reset. Here, dWs is an increment
from standard Brownian motion.

The main difficulty in estimating the parameters for these dynamics from spike-data only is that
the observed interspike-intervals of the inferred stochastic process do not form a renewal process due
to the phase differences in the sinusoidal term at the beginning of each interval (at each spike). We
propose to deal with this difficulty by binning the data into several bins each of which with approxi-
mately the same phase and then to treat each bin with the methods developed for renewal processes
(the Fortet Equation and the Fokker-Plank equation). Both algorithms are iterative and so we also
introduce a simple and constructive initialization procedure to provide them with initial guesses for
the parameters directly and automatically from the data. The initializer works on approximating
the distribution of spike dynamics as an advected Gaussian bell, whose mean and std. deviation can
be estimated from the quantiles of the ISI distribution.

Results to Present

We attempt to estimate the parameters for four (4) distinct regimes, which we call: ’Super-Threshold’,
’Critical’, ’Sub-Threshold’ and ’Super-Sinusoidal’. The regimes’ respective parameters are in tab. 1.
These regimes try to represent the following scenarios: in the ’Super-Threshold’, the bias current, α
is strong enough to trigger spikes on its own and the noise and sinusoidal currents only create jitter
around the regular spiking; in the ’Critical’ regime the two deterministic currents, α and γ sin() are
barely strong enough to spike without noise; in the ’Sub-Threshold’, the neuron spikes only due to
the stochastic fluctuations; while the ’Super-Sinusoidal’ is like ’Super-Threshold’, but here it is the
sinusoidal γ sin() term that dominates and that is the primary driver of the spikes.

The estimation results for 16 spike trains are shown in Fig. 1. We see that the estimation proce-
dures are most accurate for the ’Super-Threshold’ and the ’Critical’ regimes. We also find the Fortet-
equation method to be more accurate usually, but less robust, meaning it is more likely to be way
off. In contrast, the Fokker-Plank-equation method is more robust. We also find that the proposed
initializer is doing an effective job, starting the iterative methods close to the true parameter values.

Keywords: inverse first-passage times, stochastic neuron models, parameter estimation from stop-
ping times, Fortet integral equation, Fokker-Plank equation.
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Regime Name α β γ
Super Threshold 1.5 0.3 1.0
Critical 0.55 0.5 .55
Sub-Threshold 0.4 0.3 .4
Super Sinusoidal 0.1 0.3 2

Table 1: α,β ,γ parameters for the different regimes.

(a) SUPER THRESHOLD (b) CRITICAL

(c) SUB THRESHOLD (d) SUPER SINUSOID

Figure 1: Absolute errors of the parameter estimation routines for the 4 different spike regimes. The upper
panel shows the difference between the estimated and the real value for each parameter, e.g. α̃− α. The
lower panel shows the sum of the absolute errors, i.e. |α̃−α|+ |β̃−β |+ |γ̃−γ|. NOTE: figures have different
scales.
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Whether neurons operate as integrators or coincidence detectors may determine the role of the
cortical neuron [1, 3] and might give an insight as to the nature of the neural code. For this,
a simple measure is needed that can both be used for in vitro/vivo neuron recordings as well as
investigated analytically. Unfortunately, the most likely candidate, the response-stimulus correlation
(RSC) or reverse correlation has been shown numerically [2, 5] and can be shown analytically not
to be able to distinguish between the two modes.

As an alternative, we introduce a discrete, response-stimulus correlation related measure, based
on spike times. The discrete response-stimulus correlation (dRSC) consists of two values: (1) a
phase locking value indicating whether the stimulus actually drives the neuron or serves as back-
ground noise, and (2) a coincidence value indicating whether the stimulus is used as source of
temporal integration or as source of coincidences to detect. We tested both values of the measure
on a leaky integrate-and-fire (LIF) neuron and confirmed their validity.

In order to be able to fully assess the validity of the measure under various conditions analyti-
cally, we also introduce a re-formulated LIF model, where the single excitatory stimulus is modelled
by spike intervals instead of single points in time and the differential equations describing the neuron
are discretised. The new model (which we call the interval neuron) consists of one single system
tensor, which describes the neural behaviour. Using matrix algebra the dRSC can then be calculated
for a given set of neural parameters. This interval neuron cannot only be derived and built from an
LIF neuron, but from any mathematical neuron model, or even from in vitro/vivo recordings.

We will apply the dRSC measure to corner cases created with both neural models (LIF and
interval neuron) in order to see whether in these cases the neurons operate as temporal integrators
or coincidence detectors. This verdict will then be compared with the results of other measures (like
the one proposed in [4]) for the same corner cases. The results will be presented and fully discussed
at the conference.
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Neuroscience researchers have measured neuronal firing rates in correlation to animals’ behavior,
largely ignoring detailed patterns of spike times. We examine spike timing in the present study to
collect additional information about the dynamics of unobserved neuronal populations, based on
the assumption that neuronal spike timing can provide information about the population activities
of excitatory and inhibitory neurons.

Each cortical neuron constantly receives spiking signals from thousands of other neurons. The
random arrival of several synaptic inputs results in uncorrelated fluctuations that can be charac-
terized by their mean and amplitude. Mathematical methods have been developed, assuming that
presynaptic neuronal activities are constant over time [1]. Recently, to analyze situations in which
input parameters vary in time, several methods have been proposed using a time-dependent stim-
ulus traces [2] or averaging over repeated trials [3]. Inputs to individual neurons, however, are
not entirely controlled by animal behavior or reproduced exactly under identical behavioral condi-
tions. Instead, they might fluctuate from trial to trial. Therefore, it is necessary to develop a method
capable of estimating time-varying inputs in a single trial.

For this purpose, we constructed a method for estimating nonstationary inputs from a single
spike train using a two-step analytical method [4]. First, the instantaneous firing characteristics
consisting of the spike rate and non-Poisson irregularity are estimated using a computationally
feasible state-space method. Then, we transform the firing characteristics into input parameters
by inverting the forward transformation from input to output signals, which can be done rapidly. By
analyzing spike trains recorded in vivo, we found that neuronal input parameters are similar in the
primary visual cortex V1 and middle temporal area, whereas parameters in the lateral geniculate
nucleus of the thalamus were markedly different.

Keywords: Non-Poisson irregularity, State-space method, Leaky integrate-and-fire model.
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Synaptic connectivity is one of the most essential factors for neural mechanisms. As multi-neuron
recoding techniques are rapidly developed, to capture synaptic connectivity from a multi-neuronal
spiking activity is gaining in importance for understanding of the neural mechanisms.

To address this issue, we employed several methods to infer synaptic connections on the simu-
lated spike data of the realistic local cortical network model, which enables us to directly compare
the inferred connections with synapses of the model. We examined performances of the employed
methods of model-free (information-geometric measure and transfer entropy) and model-based
(coupled escape rate model) methods changing the network topology of the computational model
by the way used in the small-world-network paradigm.

Irrespective of the employed methods, the evaluation of similarity between the synaptic connec-
tivity and the inferred connectivity by ROC (Receiver Operating Charateristic) and related analyses
indicated that the network with a highly clustered, near regular or small-world, connectivity was
more correctly inferred than a random network. Among the employed methods, the model-based
method showed the best performance in terms of the higher similarity, less sensitivity to change in
the threshold and less required data length. Considering the evidence that a cortical connectivity
posses highly clustered features, our results suggested the possibility to infer the underlying synaptic
connectivity of the local cortical network exhibiting a spontaneous activity.

Keywords: functional connections, network topology, large-scale simulation.
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Neurons transmit information by transforming synaptic inputs into action potentials. It is essential
to investigate the dynamics of the synaptic inputs to understand the computational mechanism in
the brain.
We consider an estimation problem of input parameters from a single voltage trace of a neuron
obtained by intracellular recordings. Previous methods are based on the assumption that the input
parameters are constant over time [1, 2]. However, it is natural to expect that neuronal activity in
vivo is time-variable, reflecting the variable external conditions.
Here, we propose a Bayesian method to estimate the time-varying input parameters from a voltage
trace of the Ornstein−Uhlenbeck neuronal model [3]. The proposed method is extended for more
realistic models, i.e., Hodgkin−Huxley type models [4]. It is shown that both time-varying input
signals and ion channel state can be deduced from a single voltage trace of a neuron. The proposed
method is verified by applying it to simulated data and to in-vitro experimental data.

Keywords: Statistical inference, Single neuron models, Empirical Bayes method
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The nature of information processing in single neurons and neuronal networks is one of the most
intensively studied topics in the field of computational neuroscience. The fundamental mathematical
framework for the theoretical approach to this problem is often provided by information theory [1].
The theory quantifies, under certain assumptions, the ultimate limit on reliable information transfer
by means of information channel capacity. However, channel capacity is known to be essentially
an asymptotic quantity, as the code length and the associated coding/decoding complexity tends
to infinity. In this contribution we address both the ultimate limits (capacity) and the bounds on
non-asymptotic performance for a given code length, taking into account the probability that the
stimulus is decoded incorrectly by employing the maximum likelihood decoding scheme. Metabolic
cost of neuronal activity is also taken into account.
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We present a method of estimating the input parameters and through them, the input synchrony,
of a stochastic leaky integrate-and-fire (LIF) neuron based on the Ornstein-Uhlenbeck (OU) process
when it is driven by time-dependent input mean µ and variance σ. Driving the neuron using sinu-
soidal inputs, we simulate the effects of periodic synchrony on the intracellular voltage and the
firing of the neuron. Our estimation methods allow us to measure the degree of synchrony driving
the neuron in terms of the input sine wave parameters, using the slope of the membrane potential
during threshold crossing.

In a recent publication [1] we demonstrated how the degree of synchrony at the input of a LIF
neuron can be estimated, using the slope of the membrane potential in a small period prior to
firing. The degree of pre-synaptic synchrony is related to the operational mode of the neuron, which
can lie anywhere on a continuum between temporal integration and coincidence detection [2, 3].
The operational mode is in turn related to the way the neuron encodes information into spike
trains, which is usually considered to be based either on a rate or on a temporal coding scheme.
Our previous methods required defining a temporal window within which the pre-spike slope was
averaged for each response spike. This was necessary due to the trajectory of the LIF’s membrane
potential being discontinuous. However, the stochastic variant of the LIF, the OU model, has a
continuous membrane voltage and can be used for further investigation into more accurate input
synchrony estimation methods. In addition, our formulation of the OU model’s input also accounts
for inhibitory inputs, which our previous model did not include.

Our work is based on expressions of the OU’s membrane potential slope during firing to define
estimators for the values of the input parameters [4]. Preliminary results show that the slope of the
membrane potential provides greater accuracy in the estimation methods than estimators based on
the inter-spike interval (ISI) distribution alone. The accuracy of our results will be presented using
numerical simulations across a wide range of parameters.

Keywords: synchrony, parameter estimation, integrator, coincidence detector
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Characterizing the statistical features of spike time sequences in the brain is important for under-
standing how the brain represents information about stimuli or actions in the sequences of spikes.
Although the spike trains recorded from in vivo cortical neurons are known to be highly irreg-
ular [7, 10], a recent non-stationary analysis has revealed that individual neurons signal with non-
Poisson firing, the characteristics of which are strongly correlated with the function of the cortical
area [8].

This raises the question of what the neural coding advantages of non-Poisson spiking are. It
could be that the precise timing of spikes carries additional information about the stimuli or actions
[2, 5]. It is also possible that the efficiency of transmitting fluctuating rates might be enhanced by
non-Poisson firing [1, 6]. Here, we explore the latter possibility.

In the problem of estimating firing rates, there is a minimum degree of rate fluctuation below
which a rate estimator cannot detect the temporal variation of the firing rate [4, 3, 9]. If, for
instance, the degree of temporal variation of the rate is on the same order as that of the noise,
a constant rate might be chosen as the most likely estimate for a given spike train. It is, there-
fore, interesting to see how the minimum degree of rate fluctuation depends on the non-Poissonian
feature of spike trains.

In this study, we investigate the extent to which the non-Poissonian feature of spike trains
affects the encoding efficiency of rate fluctuations. In addition, we address the question of how
the detectability of rate fluctuations depends on the encoding efficiency. For this purpose, we intro-
duce the Kullbuck-Leibler (KL) divergence to measure the encoding efficiency, and assume that
spike sequences are generated by time-rescaled renewal processes. With the aid of analytical and
numerical studies, we suggest that the lower bound of detectable rate fluctuations, below which
the empirical Bayes decoder cannot detect the rate fluctuations, is uniquely determined by the KL
divergence. By examining three specific models (the time-rescaled renewal process with the gamma,
inverse Gaussian (IG) and lognormal interspike interval (ISI) distributions), it is shown that the KL
divergence, as well as the lower bound, depends not only on the first- and second-order moments,
but also significantly on the higher-order moments of the ISI distributions. We also find that among
the three ISI distributions, the IG distribution achieves the highest efficiency of coding information
on rate fluctuations.

Keywords: Non-Poisson firing, firing rate estimations, Kullbuck-Leibler divergence.
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Any neural network can be described as a set of neurons and inter-neuronal communication lines
– axons. When a neuron fires a spike, this spike propagates through communication line and
reaches its target neuron after some temporal delay. Future firing moments of neurons depend
on present position of impulses in axons which, in the reverberating network, depends on previous
firing moments of those same neurons. That is why delayed feedback interconnections may result in
non-renewal statistics of neuronal firing, even if the network is stimulated with a renewal process.

In order to reveal the influence of delayed feedback presence on neuronal firing statistics, we
consider the simplest possible construction with delayed feedback interconnection, namely, a single
neuron with delayed feedback. The neuron receives input impulses from other neurons and sends
its output impulses to its own input through the feedback line with a fixed time delay ∆. As input
stimulation we take a Poisson stream — the simplest renewal process. As neuronal model be take
the binding neuron [1], as it allows rigorous mathematical treatment.

Figure 1: Binding neuron with feedback line under Poisson stimulation. Multiple input lines with
Poisson streams are joined into a single one here.

In our previous paper [2], we considered the case, when refraction time r of a neuron equals to
zero, r = 0, which allows receiving and generating impulses immediately after the previous spike. In
the case of no refraction, the neuron is potentially able to generate an arbitrary large finite number
of output impulses within a finite time window ∆, needed for impulse to pass the feedback line.
Thus, the impulse from the feedback line at the moment of its arrival can provide information about
a very distant previous firing moment. We prove rigorously in [2], that in the case of no refraction
the sequence of output inter-spike intervals (ISIs) of a neuron with delayed feedback cannot be
represented as a Markov chain of any finite order.

In this work, we check if this result can be violated by presence of non-zero refraction time,
r > 0. In the presence of refractoriness, the number of output spikes (and, eventually, ISIs), which
can be generated while the feedbacked impulse is traveling through the feedback line, is limited
with [∆

r
], were [x] gives an integer part of x . That means, that at the moment of its arrival,

the impulse from the feedback line could provide information about the moment of one of [∆
r
]+1

previous firings, but cannot bring any information about the earlier ones. That is why, one could
expect the finite Markov order to be found for the output ISI stream in the presence of refraction.
The goal of this work is to check if this is the case.
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In order to reveal the influence of refractoriness, we take the limiting case

1<
∆
r
< 2, (1)

when no more than one output firing is possible while impulse passes the feedback line. In this case,
the refractoriness, taking more than half of the delay time within the feedback line, could reduce
correlations beetween ISIs for the most part.

We consider the m-order conditional probability density P(tm+1 | tm, ..., t0), which gives the
probability to obtain an output ISI having its duration within the range [tm+1; tm+1 + d tm+1[,
provided previous ISIs had durations tm, . . . , t1 and t0, respectively. We derive exact analytical
expression for P(tm+1 | tm, ..., t0) for an arbitrary m. We prove exactly, that P(tm+1 | tm, ..., t1, t0)
does not reduce to P(tm+1 | tm, ..., t1) for any m ∈ Z+. It means, that even for the case (1) the
output ISI stream cannot be represented as a Markov chain of any finite order.
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Figure 2: Conditional probability density P(t2 | t1, t0) vs. t2, found numerically by means of Monte-
Carlo method. On both pannels all the parameters are equal except the value of condition t0. It is
clearly seen, that the figures are different.

We conclude, that refractoriness does not affect qualitatively the non-Markovian character of
neuronal firing statistics, which is due to the delayed feedback presence. We suggest, that this result
should be taken into account, when analyzing experimental records of spiking statistics from any
network with delayed feedback interconnections.

Keywords: Non-Markovian statistics, Delayed feedback, Refraction time.
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Stimulus response latency is the time period between the presentation of a stimulus and the occur-
rence of a change point in the neural firing rate evoked by the stimulation. While the response
latency was explored and methods of its estimation were proposed mostly for the case if the response
to stimulus is excitatory, which means that the neuron reacts to the stimulus by an increase in the
firing rate, the opposite kind of reaction was so far of less attention. Here we focus only on the
estimation of the response latency in the case of inhibitory response.

Our approach is based on the measurements of the time from the stimulus presentation to the
occurence of the first spike after the stimulus (forward reccurrence time) in n independent trials.
Two simple models of a spike train are used and probability distribution of the forward reccurence
time under the assumption of known response latency is derived for each of them. The distribu-
tion is then employed in three different methods of detecting the response latency. Two of them,
moment estimators and maximum-likelihood estimators, are applications of generally known esti-
mation methods. The third method is based on a comparison of the theoretical cumulative distribu-
tion function of the forward reccurence time under the condition of no change in the firing rate with
empirical cumulative distribution function obtained from the experiment. Finally, all three methods
are applied on simulated data and the results are compared.

Keywords: response latency, inhibitory response, moment estimator, maximum-likelihood estimator,
Kolmogorov-Smirnov test
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Do stochastic neurons prefer to encode information about fast or about slow components of a time-
dependent stimulus? In my talk, I will consider the frequency-dependent information transmission
of model neurons of the integrate-and-fire type, both at the level of a single spiking neuron and at the
population level. I will discuss under which conditions short-term synaptic plasticity or subthreshold
oscillations may suppress or enhance the flow of information in certain frequency bands.
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The thalamus is considered as the sensory gateway to cerebral cortex and the reticular nucleus
(NRT) ‘might be considered the Guardian of that gateway’ as mentioned by Francis Crick in 1984.
Typically, the NRT receives excitatory inputs from the lateral geniculate nucleus (LGN) and from
the visual cortex (VC), and sends back an inhibitory projection to the LGN. Parvalbumin (PV) is a
Calcium buffer protein, which is highly expressed in NRT neurons [1]. Recently [2] we suggest
the lack of PV affects the firing properties and the burst discharge dynamics of the main population
of NRT neurons. For this study we performed in vivo extracellular recording with multiple elec-
trodes across RTN, thalamus and cerebral cortex in anesthetized wildtype (WT) and PV-knockout
(KO) mice. General anesthesia was induced by Equithesin at a dose corresponding to 130mg/kg
chloral hydrate and 30mg/kg pentobarbital. Simultaneous extracellular single-unit activity was
recorded during spontaneous activity and visual stimulation by xenon strobe flash at 2.5 Hz during
5 minutes. All recordings were performed with a multiple glass-coated platinum-plated tungsten
microelectrodes. Up to three distinct single units could be recorded simultaneously from the same
site using waveshape spike sorting techniques [3]. The firing patterns are described by serial interval
histograms, return maps and auto and crosscorrelograms. We will present results suggesting that
PV depleted animals express a decreased ability to process information along parallel channels in
the thalamo-cortical pathway. In conclusion, these new results are in agreement with our previous
models [4] and extend further the key-role played by NRT in controlling the information processing
of thalamo-cortical circuit.

Keywords: Parvalbumin, Thalamo-cortical networks, Extracellular recordings.
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Temporal variability in human perceptual capabilities has been a commonly reported phenomenon
attributed to ongoing changes in the brain (VanRullen and Koch, 2003). In the presence of a contin-
uous stream of information that sensory systems are exposed to, an important question about the
nature of processing such sensory input arises. Based on rich experimental evidence it has been
suggested that neuronal oscillations, which themselves display considerable variability at different
time scales, contribute to the modulation of sensory information processing (Busch et al., 2009;
Mathewson et al., 2009). Although the prestimulus cortical oscillatory activity, specifically the alpha
rhythm accompanying the resting and baseline brain states, appear to be relevant in this regard, its
modulatory role and the underlying causes remain rather elusive.

Since threshold stimulus detection task has been proven as a suitable approach to investi-
gating oscillatory correlates of the prestimulus brain mechanisms mediating perceptual fluctua-
tions (Linkenkaer-Hansen et al., 2004; Busch et al., 2009; Mathewson et al., 2009), we simu-
lated such experimental paradigm with the use of a large-scale biophysically detailed (cortical
layer 2/3) modular attractor network model (Lundqvist et al., 2006). To this end, we strongly
relied on bistable mode of network’s operation accompanied by oscillations in the synthesised local
field potentials and inherent attractor dynamics with the mechanism of stimulus-triggered retrieval
of activity patterns, stored in the recurrent connections. By default the network was in a non-
coding ground state, functionally attributed to a so-called "idling" brain condition (Pfurtscheller et
al., 1996), with alpha-like oscillations. In a hierarchical setup with two networks, one modelling
a sensory area that processes sensory input and the other one referred to as an associative area
that receives feed-forward projections from the lower network and simulates perceptual stimulus
detection, we reproduced key experimental findings. In particular, we observed and studied the
mechanisms of modulation of the network performance, both in terms of a detection rate and its
latency, by prestimulus alpha power (Linkenkaer-Hansen et al., 2004; Mathewson et al., 2009) and
phase (Busch et al., 2009; Mathewson et al., 2009; Drewes and VanRullen, 2011). Interestingly,
depending on how we controlled the amplitude of alpha oscillations, by affecting either the excita-
tory or inhibitory drive in the network (within the excitatory-inhibitory loop), we verified seemingly
conflicting experimental findings of positive (Linkenkaer-Hansen et al., 2004;) and negative corre-
lations (Sauseng et al., 2009) between the alpha power and psychophysical performance. Hence, in
line with recent electrophysiological studies in macaque monkeys (Bollimunta et al., 2011; Mo et al.,
2011), our results support a hypothesis about different cortical origins and thus different nature of
the oscillatory dynamics of the alpha rhythm, manifested in contrasting modulatory effects in stim-
ulus detection tasks. In addition, the spatial extent of our model facilitated an investigation into the
inter-area phase synchronisation conditions prior to stimulation conducive to its successful recog-
nition. The modulation phenomena we identified could be tested experimentally in neuroimaging
studies.

In conclusion, we have demonstrated that biophysically detailed hierarchical attractor networks
provide a promising framework for reproducing and understanding the correlations between pres-
timulus oscillations and psychophysical performance in stimulus detection tasks. Since the alpha
rhythm plays a dominant role in the modulatory prestimulus dynamics, our work can be linked
to an ongoing discussion about the functional role of alpha activity in the brain. The reported
results can be explained in the light of different hypotheses where alpha oscillations reflect idling
(Pfurtscheller et al., 1996), active inhibition (Klimesch et al., 2007) or attention modulation (Mo et
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al., 2011).
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Stochastic Pooling Networks (SPNs) are defined in [1], and form a useful model for understanding
and explaining how naturally occurring encoding of stochastic processes can occur, due to the inter-
action of nonlinear lossy compression, random noise and redundancy. SPNs occur in systems ranging
from macroscopic social networks to neuron populations and nanoscale electronics, and support
various unexpected emergent features, such as suprathreshold stochastic resonance [2].

Previous work on suprathreshold stochastic resonance in populations of neurons has assumed very
regular feedforward network topologies, e.g. [3, 4], and these networks are clearly identifiable as
SPNs. Here we consider whether SPNs can be observed embedded within more complex neuronal
networks with recurrent feedback synapses, such as models of cortical networks.

We address this question using the model of [5] as the ‘embedding network’ for our SPN. That
cortical network model consists of sparsely connected pyramidal neurons and interneurons, and
parameters are such that individual neurons fire at rates much lower an emergent population oscil-
lation [5]. Since an SPN encodes an input random variable, we choose to study the hypothesis
that learnt synaptic weights are stored in a distributed fashion in a network, so that weights can be
‘selected for readout’ from multiple neurons by ‘signal spikes’ arriving along axonal branches from a
single upstream neuron. A single ‘signal spike’ activates synapses with the same weight on different
SPN neurons, and if the weights, and other background synaptic input are strong enough, signal
spikes can cause each SPN neuron to emit an action potential. Different upstream neurons activate
different weight values in this model.

The ‘pooling function’ of the embedded SPN is formed simply by the total number of SPN neurons
that spike in response to a signal spike. Due to noise, the total number of spikes is a conditional
random variable that depends on the synaptic weight. The spike count can thus encode the analog
weight value in a way that can be described as ‘stochastic quantisation’ [2] (since a discrete variable
encodes an analog variable), or alternatively as a space-rate spike code that relies on noise [6].

In order to assess our hypothesis and the efficacy of our embedded SPN model, we simulated
the network model of [5] where we have additionally embedded N SPN neurons, that receive
1000 random connections from the recurrent network, and therefore receive both excitatory and
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inhibitory spikes that act like a ‘synaptic bombardment’ [7] noise source. We assume there are
many possible weights for signal synapses in the SPN, and based on simulations, we estimate how
the probability of a spike in a single SPN neuron increases with synaptic weight. This allows us to
calculate the correlation coefficient between signal synapse weight, and the SPN spike count output
for varying N , under the assumption that the selected weight is a uniform random variable. We
found that the encoding improves with SPN size and is optimal for moderate signal variance, which
is consistent with existing studies of suprathreshold stochastic resonance [2].

Recent experimental evidence suggests the possibility that cortical neuronal may code certain infor-
mation (e.g. stimulus orientation) in a randomly distributed manner throughout the dendritic tree,
on all dendritic branches [8]. We therefore also consider the case where the embedded SPN consists
of a single neuron with many dendritic branches, and each segment in the dendritic tree acts like
a single neuron in the situation we first consider above. This idea is similar to the model of Poirazi
et. al [9]. In this case, we assume a subset of synapses across the entire neuron are randomly
selected by a signal spike, but unlike the distributed SPN, the pooling operation is the summation
of the membrane potential within many dendritic branches prior to the soma. In our results, we
compare this situation to the network SPN.

Keywords: stochastic pooling network, cortical connectivity, synaptic weight readout.
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We have used the newly developed voltage sensitive dye VF2.1.Cl to monitor the electrical activity
of neurons in leech ganglia.The VF2.1.Cl dye detects voltage changes in neurons membrane by
modulation of photo-induced electron transfer (PeT) from an electron donor through a synthetic
molecular wire to a fluorophore [1]. These dyes give bigger responses than other voltage sensitive
dyes and the optical changes occur with a faster kinetics. After staining an isolated leech ganglion we
were able to monitor the electrical activity of almost 100 neurons in a ganglion, representing around
20–30% of all neurons in a ganglion. With this dye we were also able to monitor the slow changes
of voltage membrane associated to the rhythmic activity of heart neurons (HE) and the associated
interneurons. The time course of these optical traces and of electrical recordings obtained with
conventional intracellular electrodes were very similar. When images were sampled at a frequency
lower than 80 Hz the peak of the action potential (AP) could be missed and a truncated AP was
recorded optically. In the absence of stimulation, the spontaneous activity was characterized by the
firing of APs of several neurons at a frequency between 0.5 and 20 Hertz. Other neurons fired APs
more irregularly and a much lower rate. By using these dyes we were able also to identify clusters of
neurons electrically coupled, in agreement with previous electrophysiological observations. When
mechanosnesory neurons were stimulated with an intracellular electrode it was possible to detect the
overall changes of the electrical activity in the ganglion, therefore obtaining an accurate description
of information processing occurring inside a ganglion.

Keywords: Voltage sensitive dye, Leech ganglion neurons, Electrical activity
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Many lines of evidence suggest that few spikes carry the relevant stimulus information at later stages
of sensory processing. Neural mechanisms for the emergence of sparse sensory representations,
however, remain unclear. Here we present a principle mechanism that introduces a temporally
sparse code and, at the same time, increases reliability of the stimulus representation in spiking
networks. It combines principles of signal propagation across successive network stages with the
neuron-intrinsic mechanism of spike frequency adaptation. We show mathematically and in neural
network simulations how a dense code at the peripheral stage translates into a temporal sparse code
at the level of a cortical ensemble, which is embedded in a balanced network. At the same time,
trial-by-trial variability of the population code is dynamically suppressed in response to stimulus
changes by approximately 50% [1], matching experimental observations in sensory cortices [2]. We
suggest that the same principle may underlie the prominent phenomenon of sparse coding in the
insect mushroom body. Our results reveal a computational principle that relates spike frequency
adaptation to temporal sparse coding and variability suppression in nervous systems.

Bibliography

[1] Farkhooi F, Müller E, Nawrot MP (2011) Adaptation reduces variability of the neuronal popu-
lation code. Physical Review E, 83: 050905

[2] Churchland M, et al. (2010) Stimulus onset quenches neural variability: a widespread cortical
phenomenon. Nature Neuroscience, 13: 369–378

83



84



Estimation of the information pathway for a motor command
generation in an insect brain based on the physiological data

Ikuko Nishikawa, Yoshihiko Yamagishi
Ritsumeikan University

Kusatsu, Shiga, 525-8577, Japan nishi@ci.ritsumei.ac.jp
http://www.sys.ci.ritsumei.ac.jp/

Hidetoshi Ikeno
University of Hyogo

Himeji, Hyogo, 670-0092, Japan ikeno@shse.u-hyogo.ac.jp
http://www.u-hyogo.ac.jp/shse/ikeno/

Tomoki Kazawa, Shigehiro Namiki and Ryohei Kanzaki
The University of Tokyo

Meguro, Tokyo, 153-8904, Japan kanzaki@rcast.u-tokyo.ac.jp
http://www.brain.imi.i.u-tokyo.ac.jp

We report an approach to estimate the functional connection from the possible anatomical connec-
tions and physiological response of each neuron. Male silkmoth, Bombyx mori, is known for its
programmed behavior for the pheromone orientation on the pheromone source detection [1]. The
action command is generated in the premotor center, which is composed of the lateral accessory
lobe (LAL) and the ventral protocerebrum (VPC). The morphology and the physiological response
to the pheromone stimulus are obtained for main types of LAL-VPC neurons through the intensive
electro-physiological and immunohistochemical experiments [2, 3, 4]. However, how the motor
command is generated in LAL-VPC, or the information pathway in the network, is still unknown.
Therefore, the purpose of this study is to investigate the functional connection in LAL-VPC to eluci-
date the mechanism of the motor command generation based on the detailed experimental data on
each neuron.

LAL-VPC is located in each hemisphere, and is composed of five neuropile regions (inner LAL,
outer LAL, .inner VPC, outer VPC and aiVPC) [5]. Each neuron sends its input and output terminals
to some regions. Input is from the same side as soma, and output is sent to the same side for
local interneurons (LIN) or to the opposite side for bilateral neurons (BLN). Descending neurons
(DN) go outside of LAL-VPC to connect to the neck motoneuron for the steering motions. Fig. 1
is the schematic description of the structure, with a LIN, a BLN and a DN. Iwano et al.[5] listed
36 main neurons (LINs and BLNs) for the command generation. In addition, 7 types of DN are
identified [3]. Therefore, we consider a network of 86 neurons for a pair of LAL-VPC, and estimate
the connection strength between each neuron and regions. Morphology of each neuron restricts
the possible connections. And we calculate the connection strength which can best reproduce the
observed physiological response of each neuron, as an optimization problem. Sign (positive or
negative) of the connection corresponds to excitatory or inhibitory synapse. From the experiments,
LINs are supposed to be mostly excitatory, though some are inhibitory, while BLNs are supposed
to be mainly inhibitory, though a pair of excitatory serotonin neurons is identified. Therefore, we
also aim to investigate whether each neuron is excitatory or inhibitory from the optimal connection
strength.

The main pathway is extracted from the obtained connection, both by the connection strength
and by the neuron dynamics of the network simulation. Fig. 2 shows an example of obtained loop
network to generate an alternating high and low activity (called flip-flop response) of some type of
DN. The directed links in the figure indicate neurons, and the label on the link shows the response
type of the neurons (brief activation: BA, brief inhibition: BI, long lasting activation: LLA, long
lasting inhibition: LLI and flip-flop: FF), which is defined in Ref. [5].

Keywords: Functional Connection, Optimization, Insect Brain, Premotor Center, Odor Source Orien-
tation.
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Figure 1: Structure of LAL-VPC.

Figure 2: Loop network for the flip-flop activity of DN.
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Introduction In recent behavioural experiments with honeybees, Apis mellifera, we have found [1,
2] that the animals are able to distinguish coherent odour mixtures, where both odours arrive at the
same time, from incoherent odour mixtures where the onset of one odour is delayed. Surprisingly
this ability persisted down to an onset delay of only 6 ms. Moreover, the ability of bees to segregate
the mixture components is facilitated in incoherent mixtures.

In this work we explore this surprising ability in a model of the honeybee antennal lobe (AL). We
hypothesise that a winner-take-all inhibitory network of local neurons (LNs) in the AL could have
a symmetry-breaking effect, such that the response pattern to an incoherent mixture is measurably
different from the response pattern to the corresponding coherent mixture for an extended amount
of time beyond odour onset.
The Model Figure 1A illustrates the general anatomy of the olfactory system of the honeybee
as considered in our model and Figure 1B explains the circuit diagram of the model reduced to
two glomeruli for clarity. In the full model we consider all 30 glomeruli for which responses to
16 odorants were reliably observed in [3], outlined in dark grey in Figure 1A. Both the projection
neurons (PNs) and LNs are excited by olfactory receptor neurons (ORNs) and LNs inhibit the LNs as
well as the PNs of all other glomeruli. The lateral inhibition between LNs is strong enough to lead to
winner-take all responses in the population of LNs which then modify the response patterns of the
PNs. ORNs are modelled as Poisson neurons, with response rates to specific odours reconstructed
by matching the spike density functions of the model’s PN responses to the glomerular activation
patterns observed in imaging data [3]. PNs and LNs are modelled with conductance based models
that were developed to reproduce the electrophysiological PN and LN response profiles observed
previously [4].
Results Although we are still just at the beginning of this work we have already found that we (i)
can approximate the experimentally observed response patterns in the AL model, (ii) the winner-
take-all LN network does lead to different winners for different odours and, importantly, for different
incoherent mixtures and (iii) the influence of the LN network leads to measurably different PN
responses for different incoherent and the corresponding coherent mixtures. We tested the model on
hexanol, octanol, their coherent mixture and temporally incoherent mixtures of these two chemicals.
To analyse the results we calculated “template responses” to the individual odours and the coherent
mixture as the average of PN spike density functions (SDFs) in all glomeruli in the interval from 100
to 200ms after odour onset. Figure 1C,D shows the correlation of the instantaneous PN SDF values
of responses to incoherent mixtures with these response templates. We observe that the incoherent
mixture with hexanol first is initially most similar to the response template of the coherent mixture,
but eventually becomes more similar to the pure octanol response. The response to the octanol-first
incoherent mixture is also initially more similar to the coherent mixture but then becomes more
similar to the hexanol response pattern. This demonstrates that although the incoherent mixtures
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only had a microscopic delay of 10ms on this occasion, the responses are markedly different for
the two incoherent mixtures and the coherent mixture for a macroscopic amount of time during
the response. This difference could easily be exploited by the animals to recognise the incoherent
mixtures against each other and against the coherent mixture.
Conclusion Odours are encountered by the bees in thin filaments in turbulent odour plumes.
Odour mixtures emanating from the same odour source will arrive within the same filaments, i.e.
as coherent mixtures, while odorants from separate odour sources that are mixed in the air would
arrive in different filaments leading to incoherent mixtures. The ability of bees to distinguish inco-
herent and coherent mixtures could hence underlie a form of “odour object recognition” to help
making sense of the complex odorant scene encountered by the animals.

In future work we will test our predictions in physiological experiments in the bee antennal
lobe to confirm, falsify or further refine the model. We will perform more systematic explorations
of the model to establish the extent of possible response characteristics depending on the model
parameters and we will analyse the limitations of incoherent mixture perception given realistic
constraints from the anatomy and physiology of the bee brain.

Keywords: Olfaction, Honeybee, Temporal Mixture Coding, Odour Object Recognition.
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Figure 1: Model and initial results.
A) Anatomy of the relevant structures
considered in the model. B) Circuit
diagram of the model exemplified
for the two most active glomeruli for
hexanol and octanol. C) Correlation
of the PN responses to a hexanol-first
incoherent mixture with 10ms delay
to the response templates to hexanol
alone (*), octanol alone (×) and the
coherent mixture (+). D) correlation
of the response to an octanol-first
incoherent mixture to the three
templates. The grey bars mark the
presence of the stimulus at the ORNs.
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Information processing in neurons is understood incompletely, especially when neuronal inputs
have indirect correlates with external stimuli as for example in the hippocampus. In such cases,
researchers study neuronal responses to arbitrary input patterns. It is a challenging problem since
for example hippocampal neurons have tens of thousands local inputs, synapses, that can be acti-
vated or not [6]. In the experiment, the most advanced techniques allow for selective activation
of less than hundred synapses of a neuron [5]. In computer simulations, arbitrary spatio-temporal
patterns of synaptic activation can be simulated. However, constraints on computational resources
limit available samplings of patterns. That is why there is a growing interest to theoretical results
on transformation of inputs in neurons.

Often, neurons process information as a part of a network that receives its inputs from another
network. For example, the neurons in the hippocampal field CA1 process inputs from the hippocampal
field CA3, among the others [1]. We studied how neurons process network inputs within short time
windows. In the hippocampus, neocortex and other brain areas such time windows are the intervals
when inhibition of neurons gets weak [2]. Intuitively, if an input pattern makes a target neuron
spike then the target neuron should also spike in response to similar patterns - otherwise, neurons
would be too sensitive to noise. On the other hand, neurons should discriminate between sufficiently
different input patterns and spike selectively. Our main goal was to quantify how well neurons, in
particularly in the hippocampus, discriminate patterns of spiking activity in input networks.

We modeled neurons with perceptrons. As a perceptron, the model neuron performs a linear
classification of synaptic input patterns [7]. For example in hippocampal neurons, linear summation
of inputs does occur to some extent [3]. There is a recent raise of interest to perceptron neuronal
models [4, 9]. Most results are asymptotic with respect to the dimension of input vectors. Here,
using combinatorial analysis, we complement them by some exact formulas.

In our study, we considered perceptrons with binary inputs and binary synaptic weights. Experi-
mental findings support these assumptions in the case of CA1 principal cells. Binary inputs represent
spiking activity in input neurons. If an input neuron spikes, the corresponding component of the
input vector is equal to one, otherwise it is equal to zero. When an input neuron spikes, it acti-
vates its synapses with target neurons. If the neuronal excitation that results from the activation of
synapses exceeds a threshold the target neuron spikes.

As a first step, we derived formulas for the case when all the neurons in the input network are
connected with a target neuron. Then, we expanded our results to a general and more realistic
case when some of them do not affect the target neuron. As an application of our main result, we
provide a new hypothesis of how increased activity in the hippocampal field CA1 [8]may contribute
to cognitive deficits in schizophrenia.

Keywords: perceptron, neuronal model, hippocampus
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Models of cortical sequence learning and recognition that include timing variability have recently
gained attention. For example, Byrnes et. al [1] model and simulate a spiking neuronal network
that creates a sparse code and makes use of spike-timing dependent plasticity (STDP) in order to
learn sequences with elements with variable duration.

In STDP, neurons modify (i.e., strengthen and weaken) their synaptic connections based on their
relative spiking timing [2]. Recent experimental work, however, provides compelling evidence that
structural plasticity, whereby synaptic connections between neurons can also form and disappear
over timescales comparable to STDP, is a crucial component of learning [3]. Some researchers have
theorised that a combination of reweighting of synaptic strength, and reconnection of synapses are
both crucial to learning, but that reconnections are more important for longer term memory forma-
tion [4].

A recent model of cortical sequence learning, inference and prediction has explicitly incorporated
the idea that structural plasticity may be more important than synaptic weight plasticity [5]. This
model, that extends related theoretical work [6], also proposes a simple model of a cortical pyra-
midal cell where dendritic computation is crucial. Here, we study the influence of initial network
topology in the so called ‘temporal pooler’ component of the model of [5], and investigate how the
learning process changes the network topology over time. We also study how the model’s perfor-
mance depends on initial network topology, and whether the introduction of learning rules that
enable synaptic weights to also be important for learning can improve performance.

Keywords: structural plasticity, cortical learning, adaptive complex network topology.
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The efficiency of information transmission by brain is one of the major interests that have been
recently studied, both through data analysis and theoretical modeling [1, 2, 3]. Recent attempts to
quantify information transmission have concentrated on treating neuronal communication process
in the spirit of Shannon information theory. It was developed as a mathematical, probabilistic
framework for quantifying information transmission in communication systems [4].

The fundamental concept of this theory is mutual information, which quantifies the information
dependence of random variables or stochastic processes. If {X } and {Z} are input (e.g. stimuli) and
output (e.g. observed reaction) stochastic processes, then mutual information between them is given
as: I(X ; Z) := H(X ) + H(Z)− H(X , Z), where H(·) are entropies [5]. Entropies of processes with
unknown distributions (containing output process Z) have to be estimated and we accomplished it
with Strong estimator [3, 6] as it is reliable and computationally fast. Maximal mutual information,
called channel capacity, C = suppX

I(X ; Y ), reflects the upper bound on amount of information that
can be communicated over the channel.

For neuron model we chose that proposed by Levy & Baxter [3, 7]. Our brain-like neural network
model (Fig. 1) consists of number of paired excitatory E and inhibitory I neurons. Such two neurons
constitute a node (E, I). Output of one neuron within a given node becomes input of the other one
in the next discrete moment. Inhibitory neurons act to hold back activation of excitatory neurons
they are paired with. Each node (E, I)i is connected with neighboring nodes (E, I)i−1 and (E, I)i+1
through output of neuron Ei . Other nodes can be connected through long-range connections. Some
or all neurons Ei can be connected to the source of information, i.e a discrete, one-zero (spike or
no-spike) stochastic process.

We search for maximal values of mutual information between input process {X } and outputs of
excitatory neurons {Z}s. We ran multiple simulations for architectures presented in Fig. 1. The
information source parameters were as follows: firing-rate 0≤ fr ≤ 1 in steps of 0.05 and sequences
of 1000 000 bits were generated to reach high accuracy. Parameters associated with neurons were:

Figure 1: All brain-like neural architectures we studied. Each one has five nodes and source of size
three. A, a symmetric case. B, E2 has no access to the source of information. C, symmetric case with
added long-range connection from E2 to E5. D, a combination of B and C.
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Figure 2: Mutual information between input process X and outputs of E neurons for architectures B,
C, D (symmetric architecture result drawn with dashed line), maximized over: firing-rate fr , synaptic
success s and activation threshold g. Optimal values for each neuron marked with ×.

synaptic success 0 ≤ s ≤ 1 in steps of 0.05, activation threshold g ∈ {0.2, 0.3, 0.5, 0.7, 0.9, 1, 1.2,
1.6} and amplitude fluctuations were distributed uniformly on interval [0;1]. Neural network was
parametrized with inhibition strength b ∈ {0, 1/4, 1/2, 3/4, 1, 3/2} (relative to excitatory neurons
strength).

Results are presented in Fig. 2. Most neurons reach the optimal information transmission around
point where inhibition balances excitation, i.e. for b = 1. Generally, neurons are least efficient if
there is no inhibition at all, i.e. for b = 0.

Efficiency of transmission of excitatory neuron lacking access to the source of information is decreased
even by 62%, while other neurons efficiency rises by 7–13%, depending on inhibition strength.
Long-range connection, if it originates from neuron having access to the source, brings 23–27% loss
to target excitatory neuron transmission efficiency. If the connection originates from neuron without
access to the source, the efficiency of target neuron is unchanged.

Acknowledgments: This paper has been supported by NCN grant N N519 646540.
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Cortical activity exhibits correlated variability, frequently referred to as noise correlations. Correla-
tion coefficients covering a wide range of values have been reported in many cortical areas. However
little is known about its origin and data analysis based on recordings of cortical activity of awake,
behaving animals performing non-trivial tasks are scarce. In the first part of my talk I will review
recent theoretical [1] and numerical [2] work that we are doing to understand noise correlations in
recurrent neural networks. In the second part, I will report results on noise correlation [3] obtained
from data recorded as monkeys perform a perceptual decision-making task consisting in the detec-
tion of somatosensory stimuli.
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Satiety signaling POMC neurons in the arcuate nucleus of the hypothalamus play a pivotal role in
the regulation of energy homeostasis. While various endocrine and nutrient factors are defined and
their acute physiological role and signaling mechanisms are increasingly well known, the effects of
sustained extreme metabolic states and aging are less understood. However, defining diet and age
associated changes in this network and elucidating their molecular mechanisms, is critical to the
understanding of what makes the organism increasingly susceptible to metabolic disorders over its
lifespan. Here we compared intrinsic electrophysiological characteristics of POMC neurons in mice
on a normal chow diet (NCD) and mice on a high fat diet (HFD).

Using perforated patch clamp recordings, we showed that a HFD drastically modulates or rather
impairs the intrinsic properties of anorexigenic POMC neurons. In HFD mice the resting membrane
potential of POMC neurons was hyperpolarized, the action potential frequency was decreased, and
the number of neurons with no spontaneous action potential firing increased. At the systemic
level this is a dramatic reduction or even loss of an important satiety signal. Whole cell voltage
clamp recordings revealed that the frequency of inhibitory postsynaptic currents (IPSCs) was signif-
icantly increased, while the excitatory input remained unchanged. Application of GABAA receptor
blockers eliminated IPSCs completely, but neither GABAA nor GABAB receptor blockers restored
the membrane potential and firing rate to control levels. The latter results indicate that the HFD
induced hyperpolarization and decrease in firing rate could be caused by altered intrinsic properties.
Our experiments showed, that an increase in free cytosolic Ca2+ leads to an activation of apamin-
sensitive Ca2+ activated potassium currents that contribute to the reduced excitability of POMC
neurons. We found three mechanisms that potentially contributed to the elevated intracellular Ca2+

levels: a) increase in voltage activated Ca2+ influx, b) decrease in the endogenous Ca2+ buffering,
and c) decrease in the Ca2+ extrusion. Consistent with these cellular data, intracerebroventricular
application of the SK channel blocker apamin into the left lateral ventricle caused a reduction of
food intake in mice on HFD at a dose that was not effective in mice on NCD.

Keywords: Ca2+ handling, Hypothalamus, POMC neurons.
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We address the problem of non-parametric estimation of the probability density function and some
recently proposed measures of statistical dispersion of positive continuous random variables, which
statistically describe the distribution of the interspike intervals in neuronal activity records.

Although standard deviation is used ubiquitously for quantification of variability, such approach
has limitations. The dispersion of the probability distribution can be understood in different points of
view: as “spread” with respect to the expected value, “evenness” (“randomness”) or “smoothness”.
Although the probability density function, or its estimate provide a complete view, quantitative
methods are needed in order to compare different models or experimental results.

We apply the maximum penalized likelihood estimation of the probability density function
proposed by Good and Gaskins [1] and present a complete methodology how to estimate the prob-
ability density function of the interspike intervals and dispersion measures with a single algorithm,
[2].
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Fano factor (FF) is one of the most widely used measures of variability of spike trains. It is defined
as

FF= lim
t→∞

FFt = lim
t→∞

Var(Nt)
E(Nt)

,

where Nt denotes the number of spikes in time interval of length t. Its standard estimator,cFF, is the
ratio of sample variance and sample mean of spike counts observed in window of fixed length, t, [1].
These counts are obtained either from n (short) independent spike trains or from a single (long)
spike train, which is divided into n intervals of length t. It is known that cFF is strongly biased for
small t in both cases, therefore the window should be chosen large enough to reduce this bias.
However, in estimating from single spike train increasing of t causes decrease of the number of
intervals with spike counts, which leads to larger variance of cFF. Thus the question of optimal t
arises. In this work we study Fano factor and its estimation for renewal processes with focus on this
issue.

We investigate the dependence of FFt on t and the effect of refractory period on this dependence.
Both, relative and absolute refractory period, cause an initial decrease of FFt , which can lead to
nonmonocity of corresponding curves. Because of this effect,cFF for small values of t does not reflect
the true value of FF. This is illustrated for gamma and inverse Gaussian probability distributions of
interspike intervals.

Finally, we derive an approximate asymptotic formula for mean square error (MSE) of cFF when
Fano factor is estimated from n independent spike trains. Using simulations we show that this
formula can also be used in the situation with single spike train to find t which minimizes MSE.
However, the length of the window which minimizes MSE is not always in practice suitable, as for
FF near one it can be extremely short and has to be increased.

Keywords: Fano factor, renewal process, mean square error.
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Electric fish explore their environment using an electric organ discharge. The electric field is modi-
fied by the presence of nearby objects allowing the fish to identify different object attributes related
to their impedance, shape, position in the electric field, size and distance. This study is focused on
the electro-sensory electromotor cycle of Gymnotus omarorum.

These fish show a characteristic electromotor behavior unit consisting of transient reductions of
the interval between electric organ discharges followed by a slow relaxation phase. This type of
pacemaker responses is triggered either by sensory signals or skeleton-motor commands [1]. This
basic behavior is part of more complex behaviors specifically related to changes of electro-sensory
images of the environment: a) the novelty response and b) the jamming avoidance displays [2].
Novelty responses occur when the presence of a novel object modifies the self-generated electric
field. Since each EOD generates an electric image, a novelty response causes an increase in the
frames per second rate, allowing the fish to explore such object with larger time resolution. Jamming
avoidance displays are triggered by allo-generated electro-sensory signals either preceding or coinci-
dent with the EOD. These displays tend to maintain the mutual information between self-generated
electro-sensory signals recorded at the skin and the brain in the presence of jamming [3].

The aim of this study was to further investigate the sensitive periods of the EOD cycle in which
changes in local or global stimuli provoke transient reductions of the pacemaker interval and the
electro-sensory mechanisms involved in detecting the changes in stimulus that trigger this behavioral
unit.

First, we investigated in behavioral experiments how an interference signal cause changes in
the pacemaker rate. We applied global (head to tail) or local (with a dipole near the skin) 0.1-
1ms electric stimuli to water. As expected, onset and offset of stimuli coincident with the EOD
provoke novelty responses. To further investigate the phase of the stimuli involved in triggering
such response the short stimuli (0.1 ms) was slowly varied (0.1-1 per second) over the EOD and the
EOD interval. When sweeping the late phase of the waveform it easily provoked novelty responses.
When the stimuli swept intermediate phases of the inter EOD interval no responses were obtained
but when the stimuli approached the next EOD transient reductions of the pacemaker interval were
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also observed. Phase locked stimuli at long delays (close to the next EOD) caused oscillating changes
of the cophase, suggesting that there is the change of the stimulus, rather than its steady pres-
ence, the cause of transient accelerations of the pacemaker. These data are coherent with previous
modeling [4, 5].

Second, to investigate the sensory mechanisms involved in the detection of stimulus variation we
recorded units and field potentials in the freely moving animals while applying electrical stimuli to
the receptive field of the explored ELL zone. We found that changes in the stimuli applied at the time
of the EOD (thus mimicking the appearance or disappearance of an object) cause relatively large
field potentials (“novelty potentials”). With the stimulus polarity that increases the main slope of
the EOD waveform, these potentials occur at about 12-14 ms after the EOD only in the next interval
after the modified image. With the other polarity it occurs at a phase of 14-20 ms in the next 4
or 5 intervals following the image change. Interestingly, when we elicited the jamming avoidance
displays by applying a global stimuli (mimicking the presence of a second fish), or even placing
another fish in the neighborhood of the implanted one, similar field potentials occurred previously
to the EOD transient accelerations.

Our data suggests that the novelty responses and the jamming avoidance displays share common
sensory mechanisms at the electro-sensory lobe. Interestingly, the single “novelty potential” occurs
about the time of transition between the silent and the active period of pyramidal neurons (see
companion abstract), suggesting that this potential may be the expression of a descending control
signal, phase locked with the EOD.

Keywords: electro-sensory system, unitary recording in freely moving fish, jamming avoidance,
novelty responses

Bibliography

[1] Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:
156–191

[2] Westby GWM (1979) Electrical communication and jamming avoidance between resting
Gymnotus carapo. Behav Ecol Sociobiol 4: 381–393

[3] Nogueira J, Caputi AA (2011) Timing Actions to Avoid Refractoriness: A Simple Solution
for Streaming Sensory Signals. PLoS ONE 6(7): e22159. doi:10.1371/journal.pone.
0022159

[4] Capurro A, Macadar O, Perrone R, Pakdaman K (1998) Computational model of the jamming
avoidance response in the electric fish Gymnotus carapo. Biosystems 48: 21–2

[5] Caputi, AA (2012) Timing self-generated actions for sensory streaming. LNCS (in press)

104



Response Properties of First- and Second-Order Neurons in the
Olfactory Systems of a Moth and a Frog

Jean-Pierre Rospars
UMR 1272, PISC, INRA, 78000 Versailles, France
Jean-Pierre.Rospars@versailles.inra.fr

Philippe Lucas
UMR 1272, PISC, INRA, 78000 Versailles, France
Philippe.Lucas@versailles.inra.fr

Patricia Viret
Centre de Recherche en Neurosciences,

Université Claude Bernard – CNRS UMR 5292 – INSERM U 1028,
50 avenue Tony Garnier, 69366 Lyon cedex 07, France

pviret@olfac.univ-lyon1.fr

The first two neural layers of the olfactory systems of insects and vertebrates are similarly organized.
The first-order sensory neurons, the olfactory receptor neurons (ORNs), principally located in the
insect antennae and the vertebrate main olfactory epithelium, project their axons in the primary
olfactory centre in the brain – the insect antennal lobe and the vertebrate olfactory bulb. There,
they make synapses with local neurons and second-order output neurons – the insect projection
neurons (PNs) and the vertebrate mitral cells (MCs).

In recent years we have studied experimentally [1, 2, 3] and theoretically [4, 5] various aspects
of the stimulus-response relationships of these two neuron types. They present a number of intriguing
response properties with their high (or low) sensitivity and small (or wide) dynamic range. To study
these properties and analyse how the spiking response reflects quantitatively the intensitive and
temporal features of the olfactory stimuli we have used a comparative approach based on insect and
vertebrate neurons. For insects (a moth), we have analysed ORNs and PNs responding to the main
component of its sex pheromone (a hydrocarbon molecule), and for vertebrates (a frog), the ORNs
and MCs responding to four ‘ordinary’ odorants (anisole, camphor, isoamylacetate and limonene).

Spike trains were recorded with electrophysiological techniques adapted to the four preparations
and odorants were applied as square pulses of different concentrations. Methods were developed
to analyse quantitatively these spike trains in both neuron types and in both groups. Beyond clar-
ifying the respective merits and limits of these methods (e. g. spike counts in fixed time window,
kernel-estimated firing rates, instantaneous firing rates etc.), their broad application revealed the
multidimensional nature of spike trains.

Clear differences between groups appeared in the response patterns. The most apparent was
the often triphasic response of frog ORNs, contrasting with the monophasic response of moth ORNs,
and the bi- or triphasic response of moth PNs. In order to facilitate the comparisons, in all cases we
focused on the properties of the first phase (called here ‘response’ for short).

We showed that the responses of both neuron types in both groups present similar properties.
For example the response latencies decrease exponentially with the dose whereas the peak response
frequencies increase according to sigmoid Hill functions. The parameters describing these responses
(for example threshold, dose at mid-maximum frequency, maximum frequency, Hill coefficient for
frequencies) are different in different neurons. However, they follow the same statistical distribu-
tions (normal or lognormal). This large variability was expected for frog generalist neurons but
less for moth specialist neurons. Finally, the main differences between moth and frog neurons were
found to be quantitative. For example the response frequencies, the dynamic ranges and the increase
of sensitivity of second- with respect to first-order neurons are higher in the moth than in the frog.

These results provide reference data to develop models of single neurons [4], neuron popula-
tions [5] and neural networks [6, 7], and to understand the environmental features that controlled
their evolution [8].
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Whether the strong variability in cortical spike trains is noise or important for computation remains
an open question. Time resolved analyses have recently shown that the trial-to-trial variability is
modulated over the course of experimental trials and can depend on the experimental condition
[1, 2]. One hypothesis that can explain such modulations is that of an ongoing background activity
of a network onto which the activities of individual neurons are superimposed [3]. We use spike
train statistics to investigate this hypothesis. Similar to [4], we assume a division of the neuronal
variability into a part that is due to relatively slow changes in network state and one that arises from
the neurons intrinsic properties. Further we show that time resolved parallel analysis of the Fano
Factor (F F) and squared Coefficient of Variation (CV 2) can be used to quantify these individual
components of the count variance [5]. We use extracellular recordings from the motor cortices of
two monkeys performing a delayed center out reach task (data previously published [6]) to show
that the CV 2 is only weakly modulated over time (see also [7, 8]) and can be used as an indicator
for a neuron’s intrinsic variability. We then present a gamma process model where the average
rates and regularity parameters (1/CV 2) are fitted to the dataset. The FFs can then be matched by
adding varying amounts of backround rate to the individual trials. This model then captures the F F
modulations observed in the data and can be used to further investigate the interactions between
ongoing activity and task related processes.

This study is funded by the DFG, GRK 1589
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The understanding of the neuronal code is important to know the structure of the neuronal network.
Mathematical models may help to this aim. Indeed, there exist several mathematical models for the
description of the dynamics of the membrane potential of a single neuron. Furthermore, mathe-
matical tools for their study have been developed during past decades [1, 2, 4, 5]. Mathematical
models for the description of small networks, extending single neuron models, exist in the literature
[3, 6]. However, their study presents several mathematical problems and simulations or numerical
approaches are often necessary [7].

Here we focus on some of these difficulties and we develop some specific mathematical tools
to study two network models characterized by the leaky integrate and fire structure. We assume
that the inter-times between successive spikes of each single neuron are independent identically
distributed random variables. On the contrary the inter-spike intervals of two or more neurons
are dependent. We look for the dependence properties of the spike trains generated by different
neurons. Due to the difficulty of the problem, we limit our study to the case of two neurons, but the
proposed methods may be extended to larger networks.

In the first model, we consider two neurons whose membrane potential evolves according to an
integrate and fire Wiener model. Each membrane potential evolves independently from the other,
until the time when one of them attains a threshold value. When that neuron releases a spike, its
membrane potential is reset to its resting value and its evolution restarts anew. At the same time,
the membrane potential of the other neuron has a jump of constant amplitude. Then, the dynamics
of both neurons pursue independently until one of them reaches again its boundary, producing a
jump in the membrane potential of the other. The study of the coupling of the inter-spike intervals
of the two connected neurons presents new problems with respect to single neuron models. Here
we discuss them and we present some analytical result on the coupling properties of the spike trains
for the case of two neurons modeled through jump diffusion processes, when the diffusion is a
Brownian motion.

The second model describes the membrane potential evolution of two neurons through a bivariate
Ornstein-Uhlenbeck process characterized by correlated noise. The spike mechanism is analogous
to that of the one-dimensional Leaky Integrate and Fire models for single neuron (cf. [8]). For
this process, we determine numerically the joint distribution of the first passage time through a two
dimensional boundary.

The developed tools are not yet sufficient for a complete study of the dependence properties of
the two considered models, but they represent a first step toward the study of the spike trains. To
attain this goal, we should generalize our method to the case of arbitrary couples of spike epochs of
the considered neurons.
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Neurons in sensory systems are often exquisitely tuned to specific stimulus features. Thus, a first
step in the characterization of their input–output transformation is to identify which aspects of
the stimulus affect a neuron’s activity level and which do not. As the space of possible stimuli is
typically high-dimensional, an exhaustive exploration of all candidate stimuli appears impractical.
But fortunately for neuroscientists, individual neurons often seem to be remarkably selective, and
only care about subspaces of low dimensionality. The identification of such low-dimensional spaces
of relevant stimuli and their distinction from the larger irrelevant space is a crucial challenge in
sensory neuroscience.

In the simplest scenario, an analysis may aim at identifying a single relevant dimension in stimulus
space, corresponding to a particular stimulus feature. This is suited, for example, for neurons whose
response properties are well captured by their receptive fields. A standard technique for assessing
the receptive field from electrophysiological experiments is to measure the spike-triggered average
(STA) under stimulation with a broad-band signal, typically white noise.

In many cases, however, a single stimulus feature is insufficient to describe a neuron’s response
characteristics. If the cell is sensitive to several features and pools them in a nonlinear fashion, its
stimulus–response relation may not be well captured by just the receptive field. For these reasons,
spike-triggered covariance (STC) analysis has emerged as a popular extension of the STA. In STC
analysis, the stimulus segments that precede a spike are characterized through a principal compo-
nent analysis, which allows the extraction of multiple relevant stimulus dimensions. The basic idea
is to detect differences in variance between the distribution of spike-producing stimulus segments
and the prior distribution of all stimulus segments. The method is based on the construction and
diagonalization of the spike-triggered covariance matrix C . Irrelevant stimulus dimensions are iden-
tified as the eigenvectors of C whose eigenvalues are equal to the prior stimulus variance. The
eigenvalues of relevant stimulus directions, in contrast, differ from the prior variance.

The statistics of the applied stimulus play an important role for applying STA and STC analysis.
In neurons whose firing probability depends on a single stimulus direction, the STA provides a
consistent and unbiased estimator of the relevant direction when the probability distribution of all
applied stimuli displays spherical symmetry [1]. This condition states that all stimulus segments
that have the same magnitude (i.e. the same Euclidean norm) must also have the same probability
of occurrence.

Surprisingly, the requirements concerning the stimulus distribution are more restrictive for STC
analysis, where stimuli need to follow not just a spherically symmetric, but a Gaussian distribution
to guarantee that the analysis provides a consistent estimator of the relevant stimulus space [2].
Given the otherwise tight analogy between STA and STC analysis, this difference appears puzzling.
For STA analysis, the requirement of a spherically symmetric stimulus distribution is best understood
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in a geometric picture of why the technique works [1]. The insight and intuition supplied by the
geometric proof thus calls for a similar perspective on STC analysis.

Here, we provide such a geometric derivation for STC analysis, leading to a simple proof of why the
technique works, that is, of the consistency of the method [3]. The geometric approach highlights
the importance of spherical symmetry also for STC analysis and suggests a simple modification of
the procedure that makes it applicable to stimulus ensembles with general spherical symmetry, not
necessarily Gaussian. In the modified method, irrelevant stimulus directions are identified as the
eigenvectors of C whose eigenvalues appear in the spectrum as a baseline of degenerate values. An
examination of the symmetry properties of the space of spike-triggering stimuli reveals that irrele-
vant directions span a subspace where the matrix C is highly symmetric, actually proportional to the
identity matrix. Therefore, the irrelevant subspace is a highly degenerate eigenspace of C . For non-
Gaussian stimuli, the numerical value of the degenerate eigenvalues cannot be predicted in advance,
since it may vary with the stimulus distribution and the input–output transformation implemented
by the cell. In the extended method, hence, irrelevant directions can no longer be identified by the
magnitude of their eigenvalue. Degeneracy, however, typically suffices to distinguish them. Relevant
directions, in consequence, are flagged by eigenvalues popping out as outliers from the degenerate
spectrum.

By means of a simple linear transformation, the new approach can be extended to arbitrary elliptic
stimulus distributions, containing correlations between different stimulus components. To facili-
tate identification of relevant stimulus dimensions also when analyzing finite data sets, we finally
introduce a new statistical test that assesses the significance of relevant stimulus dimensions. The
extended method widens the applicability of spike-triggered covariance analysis, allowing the exper-
imenter to choose the stimulus from a larger class of statistical distributions, and thereby, to better
select the stimuli that drive cells most efficiently.
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The precision of timing of action potentials reached the most expressed form in the neural
circuits of the auditory pathway. The task of spatial hearing requires the neural network to be able
to distinguish time difference of tens of microseconds. The particular mechanisms of neural coding
differ in various animal species. It has been experimentally shown that temporal code (in the form of
spike latency) is used in some invertebrates [1] while topographic code is used in some birds (in the
form of delay lines [2]). The code used in mammals is a matter of controversy since no clear evidence
for delay lines was shown. Moreover experiments on small mammals show that the interaural time
difference tuning curves of the critical binaural neurons are shifted so that the slope part of the curve
covers physiological range of the animal [3]. This type of so-called slope code, encodes particular
value of azimuth into particular value of firing rate. We model the stochastic circuit, which uses this
coding scheme and ask how the noise present in the spiking mechanism influences the overall time,
which the circuit needs for reliable estimate of the sound source azimuth. For measuring this time
we use ideal observer methodology [4] and estimate the time needed by single binaural neuron
to reach the perceptual decision, see Figure 1. This figure shows a perceptual decision measure in
dependence on the standard deviation of the spike time, for short called the jitter, which is a noise
inherent in the neural circuit.
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Figure 1: The jitter value determines the time needed for the perceptual decision.
Parameters of the exponential function were fitted (dotted line) to the last passage time dependency
on the spike timing jitter values obtained by the computer simulation of the mammalian sound
location neural circuit (solid line).

Parallelism further helps to lower the noise. We have discussed in [4] that in comparison to only
single neuron, sensory neural processing is faster when several neurons of the same nucleus are
used. The parallelism in the auditory pathway is ubiquitous, from periphery up to higher processing
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relays, and the parallel fibers also converge on higher order neurons. For example the level of
noise is lowered due to convergence in avian nucleus magnocellularis [5]. The conditions for both
enlargement and diminution of jitter due to convergence are given in [6].

The desirable effect is lowering the spike timing jitter. Optimal level of the jitter must exist,
since zero jitter would not allow the stochastic neural computation (and is not possible in the real
biological system anyway) and high values of jitter peturb the incoming signal so its decoding is no
more possible. The jitter level attained by given neurons is one of the key parameters influencing
the performance of the sound location circuit as a whole, therefore its values in the mammalian
circuit are worth of close investigation.

It is known from the human psychophysics that the just noticeable difference of azimuth accuracy
in the mid line is ±2◦. The variable shown in Figure 1 (the last passage time) in dependence on
the jitter values denotes how long time does the simulated azimuth accuracy take before it enters
(lastly passages into) the ±2◦ reference interval mentioned above. This way we relate the neural
computation and its code to human perception.

Keywords: auditory brainstem, ideal observer, medial superior olive, stochastic interpolation model,
sound location neural circuit, sound source azimuth
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Synchronization is an universal phenomenon in networks of coupled neuronal units and induces
a large scaled coherent rhythmic spiking. I will concentrate in my talk on the influence of noise
in the dynamics, on effects of network-disorder and network-correlations on the neural activity,
and on modifications arising from a delayed interactions between the stochastic neurons. For all
these topics paradigmatic models for phases of the neurons are introduced and will be investigated.
Outgoing from the stochastic dynamics of the ensemble of neurons, I formulate nonlinear balance
equations for the mean phases and study them by bifurcation theory. In dependence on noise inten-
sity, strength of disorder and of correlations and mean delay time conditions for synchronizations
are elaborated. Computer simulations support the findings, but show also the limitations of the
made approximations in certain cases as will be discussed in the talk.
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Complex networks provide an excellent framework for studying the function of the human brain on
a variety of scales, from the interaction of single neurons to the activation of large cortical areas.
Plenty of studies have recently shown the merit of a graph-theoretical approach to better understand
brain functions [1]. A basic problem for this approach is that estimating functional networks from
measured signals of brain activity is far from being trivial, especially if the data is non-stationary
and noisy, as is often the case with physiological recordings. In particular, two decisions have to
be made : First, one has to decide which measure to use for estimating the functional connectivity
between the individual components of the network (nodes). The choice defines the nature of the
dynamic interactions considered as a functional connection. Usually this step gives a real valued
all-to-all functional connectivity matrix between all nodes. Second, a threshold has to be applied
to convert the real-valued similarity matrix into a binary matrix representing the functional graph.
Thresholding is necessary to distinguish true functional relationships between nodes from links that
appear only by chance.

Here we introduce an efficient method to estimate time evolving functional networks from multi-
variate data. The concept we employ are order patterns, which provide a symbolic representation
of a real valued time series that represents the local rank structure of a given time series. Order
patterns have been shown to be suitable for short and non-stationary data [2]. An advantage of this
approach is that it replaces the notion of similarity by that of identity in defining a functional link
between two nodes, abolishing the need to decide for a threshold that classifies the (correlation)
values as high enough to be considered as a functional link; a step that is prone to arbitrary choices.

We demonstrate the potentials of this approach with model data as well as experimental data
from an electrophysiological study on language processing.
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The cerebral cortex has been classified according to the cytoarchitectonics, reflecting the structure
and organization of cortical tissue. The cytoarchitectonically divided areas were found to have
the different functions. Recently, we collected neuronal signals recorded from individual cortical
areas and investigated their non-Poisson irregularity. It turned out that neuronal firing irregularity
does not vary significantly in time for each neuron but varies among neurons in a manner strongly
correlated to cortical functions; neuronal firing patterns are regular in motor areas, random in the
visual areas, and bursty in the prefrontal area [1]. Because spikes are originally determined by the
signals that have been delivered to individual neurons, it may be possible to inquire into the input
signals that have generated such firing patterns. Though problems of estimating inputs from output
signals are generally ill-posed, a large number of randomly arriving input spikes make it possible to
extract some information from an output spike train; a number of irregular synaptic inputs result
in uncorrelated fluctuations with means and amplitudes that can be translated into the activities of
presynaptic excitatory and inhibitory neuronal populations. Mathematical methods of estimating
inputs from output firing pattern have been developed on the assumption that presynaptic neuronal
activities are constant over time [2]. We proposed tracking temporal variations in input parameters
comprising the mean and the amplitude of uncorrelated fluctuations [3]. I first review the methods
for gauging the non-Poisson irregularity from a spike train [4], and then, discuss the method of
transforming the information of firing patterns back to the activities of presynaptic excitatory and
inhibitory neuron populations.
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Ion channel noise can non-trivially affect spiking patterns [1]. However, whether channel noise
can give rise to noise-enhanced neural processing [2] is unclear, as it has received relatively little
attention in this context compared with synaptic noise. An exception is recent simulations [3] of
a population of Hodgkin-Huxley models. This work revealed that a noise-enhancing effect called
suprathreshold stochastic resonance (SSR) [4] can be observed in the population model, solely due
to channel noise, as modelled by Markov-chain techniques that track the state of every channel.

We have therefore investigated (i) whether other forms of such stochastic facilitation [2] can be
observed due to ion-channel noise models; and (ii) whether new efficient stochastic differential
equation (SDE) approximations to channel noise [5] are accurate for such simulations. Specifically,
we replaced current noise with channel noise in a model of phasically firing neurons that exhibits
a noise-enhancing effect called slope-based stochastic resonance (SBSR), i.e. noise enables firing in
response to slowly varying inputs [6]. We found that SBSR persists for a broad range of patch areas.

However, our main result is to show that SSR and SBSR can be combined to form a new noise-
enhanced coding effect due that we label ‘slope-based suprathreshold stochastic resonance.’ This
result suggests intrinsic channel noise might be exploited in-vivo to enable phasic population responses
to robustly encode slowly varying signals. Although our study used channel noise, the same effect
would likely be observed with synaptic or injected current noise.

Keywords: Phasic neuron, ion channel noise, slope encoding.
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Spike-frequency adaptation is a common feature of many neurons and has a large impact on sensory
information processing. Spike-triggered adaptation currents lead to an intricate neuronal dynamics
with a stationary firing statistics that cannot be described by a renewal model. This is most promi-
nently revealed by negative correlations between interspike intervals, which have been frequently
measured in adapting neurons, both in experiments and model simulations. The link between adap-
tation and non-renewal spiking statistics, such as the serial correlation coefficient of interspike inter-
vals (ISIs), is, however, still poorly understood theoretically. In my talk, I will present a theoretical
analysis of simple models with adaptation that can be solved analytical. In particular, expressions for
the ISI distribution, the serial correlation coefficient, and the power spectrum will be derived, which
explain many of the observed non-renewal features. For the supra-threshold regime (limit cycle
spiking), I will demonstrate how weak-noise approximation techniques can be used to calculate
the stationary statistics for arbitrary adaptation strength and arbitrary time constants. In particular,
perturbation theory is used to study how deviations from the limit cycle due to noise propagate from
spike to spike. Moreover, the Fokker-Planck equation can be solved in the neighborhood of the limit
cycle, which yields the stationary voltage distribution as well as the distribution of the adaptation
current upon firing events. Finally, I address the problem of serial correlations in neurons operating
in the subthreshold regime. To this end, an escape rate approch based on a Markovian dynamics
of a discrete adaptation variable yields an exactly solvable case providing a theory for negative ISI
correlations in fluctuation-driven neurons.
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Integrate and Fire models, as well as Leaky Integrate and Fire models, are generally considered a
good and simple tool to describe the membrane potential dynamics of a single neuron. Their use to
investigate the neural code has helped the interpretation of many features, such as the role of noise
in signal transmission. They can qualitatevily reproduce experimental data and, in some instances,
fit the observations quantitatively.

Despite their success, their study was mainly qualitative up to recent years. The development of
statistical techniques for the estimation of their parameters is quite recent. Furthermore it is mainly
focused on the parameters appearing in the drift and diffusion coefficients. The estimation of the
firing threshold value presents difficulties. Indeed, the observation of experimental intracellular
recordings shows that the membrane potential may cross the threshold level several times before an
action potential is generated.

This fact suggests changing the spiking mechanism typical of (Leaky) Integrate-and-Fire models.
Here we do not identify the spike time with the first passage time of the process describing the
membrane potential dynamics through a threshold. We study a modified version of the (Leaky)
Integrate-and-Fire neuron model where a spike is generated whenever the membrane potential
remains without interruptions above the threshold level within a period of time after crossing. Hence
the firing time is not defined by an instantaneous crossing of the level, but depends on the behavior
of the membrane potential on a prescribed window.

The proposed spiking mechanism enhances the range of behaviors of the modeled neuron.
Contrary to the (Leaky) Integrate-and-fire models, the neuron with the new firing definition behaves
both as an integrator and as a coincidence detector, depending on the width of the introduced
window.

Keywords: Leaky Integrate and Fire model, Threshold mechanism, Integrator, Detector.
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Biological systems evolve as compromises and many of them can be expressed in terms of energy
efficiency [1, 2]. Inspired by brain network architecture we analyze the communication channels
composed of the main brain ingredients. We study the information-energetic transmission effi-
ciency of such neuronal networks. The Shannon Information Theory is applied and the fundamental
concept of this theory, Mutual Information between input and output signals is estimated with high
accuracy. The entropy estimator is that of high quality proposed in [3] and the encoded information
were of 106 bits long to reach high accuracy. The model of neuron considered is that in the spirit of
probabilistic approach proposed by [1] and further explored in [4].

The network constitutes from nodes each of them being a pair excitatory neuron and corresponding
inhibitory one. The nodes are distributed uniformly over the circle (Fig. 1). Each node is connected
with neighboring nodes and additionally the nodes can be connected through long-range connections.
Source signals are modeled by Bernoulli process (spike or no-spike) and they can support excitatory
neurons only. We study a variety of complementary architectures (Fig. 1). The following parameters
affect the effectiveness of this communication system: Source parameter – firing rate fr , entropy
h; Neuron parameters – synaptic failure s, threshold activation g, inhibitory level of dumping b,
number of synapses l; Network parameters – size r, number of nodes n. We assume that most
energy is consumed by spikes. Thus, with Mutual Information for a given neuron denoted by M I ,
we analyze the information-energetic formula:

Λ(b) =max
g

�

max(s, fr )M I(s, fr , b, g)

ϑ(s0, f 0
r )

�

,

where ϑ(s, fr) is equal to s · (n fr + b fI +
∑

w fw), s · (b fI +
∑

w fw), s ·
∑

w fw for with- and
without access to the source and for inhibitor, respectively. ϑ(s0, f 0

r ) are the values maximizing
M I . The denominator is proportional to the number of spikes actually used to transfer information.
The role of inhibitors, long-range connections and size-delay effects are studied and information-
energetic optimal parameters are determined.

Figure 1: Brain-like neural architectures we studied. Each one has five nodes and source of size
l = 3. A, a symmetric case. B, E2 has no access to the source of information. C, symmetric case with
added long-range connection from E2 to E5. D, a combination of B and C.
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Figure 2: A, illustration of inhibition influence. B, size effects. C, long-range connection role.

Inhibitors influence: Parameter b, being a ratio of inhibitory neurons’ strength in relation to exci-
tatory neurons’ strength, affects every signal that I neuron sends forward. If b = 0, then amplitude
of every inhibition signal is reset to zero as if I neurons had completely no effect on the structure’s
behavior. The bigger the b is, the more potent inhibition signals are in relation to excitatory ones.
If b = 1 then both types of neurons react with the same strength. It turned out that inhibitors can
strength the effectiveness of transmission even by 50 percent (Fig. 2A).

Size effects: The most important effect of the size increase is a delay in transferring the information.
Therefore it was expected that the transmission is most efficient for smaller size, i.e. for r = 1 (r
is radius of the circle) but surprisingly further increase of the size (r = 2,3, 4) does not change
effectiveness significantly (Fig. 2B). We also observe that a two times increase of the size can cause
even three times decrease of the information-energetic efficiency.

Long-range connections role: We observe that long-range connection can lead to improve target
neuron’s information-energetic efficiency significantly (even by 70 percent) if the neuron starting it
has no access to the source of the stimuli. If the connection originates from neuron that has such
access, it can bring a 40 percent loss to the target neuron’s efficiency (Fig. 2C) – however this
connection increases the efficiencies of starting neuron and neurons neighboring target neuron by
up to 24 percent.

Conclusions: Our research shows, both through qualitative and quantitative results, that the brain-
like networks significantly improve the information-energetic transmission efficiency.

Acknowledgments: This paper has been supported by NCN grant N N519 646540.
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In many biological systems, an applied input (stimulation) has an impact on the output (response).
If the response can only be observed on top of an un-distinguishable background signal, the estima-
tion of the response can be highly unreliable, unless the background signal is accounted for in the
analysis [1].
Such estimation becomes even more unreliable if there is a delay in the response to the stimulus.
In fact, if the background activity is ignored, however small it is compared to the response activity,
and however large is the delay, the estimate of the time delay will go to zero for any reasonable
estimator when increasing the number of observations [2].

Here we propose non-parametric and parametric estimators for the time delay and the response
latency, defined as the inter-time between the onset of an input and the output. These estimators
are compared on simulated data. Theoretical results on the response latency are also presented.

This problem is described in the context of information transfer within a neural system, more
specifically on spike trains from single neurons. However, the proposed technique can be applied to
other biological system where one is interested in the estimation of the response to a stimulus.

Keywords: Response latency, background signal, point processes.
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Different types of modeling approaches are used for the examination of neural coding and brain
dynamics. The physiologically most realistic modeling strategy is the Hodgkin-Huxley type approach [1].
Unfortunately, when facing larger scale problems the original Hodgkin-Huxley (HH)-type algorithms
soon become unhandy and even have been considered as “computationally prohibitive” [2]. Accord-
ingly, a diversity of simplified approaches has been developed, especially in the biophysics commu-
nity, like the widely used Fitzhugh-Nagumo model. With such simplifications, however, the direct
relation of the models’ variables and control parameters to the physiological mechanisms are often
sacrificed.

By contrast, our simplifications of the original HH equations have been introduced with focus on
actually most relevant experimental and clinical measures [3]. As an example, the complicated and
unhandy equations for the calculation of voltage dependent rate constants in the original HH-model
have been omitted. Voltage dependencies of (in-)activation time constants can anyhow by neglected.
The precise shape of an action potential, nowadays, is of minor interest. Especially, in agreement
with conventional presentation of experimental data, the steady state voltage-dependencies of the
ionic conductances can be given by easy adjustable Boltzmann functions. Nevertheless, whenever it
is required, ion channel rate constants can be considered. These interdependencies, again, can be
implemented in a simpler and easy adjustable way, i.e. by single exponential curves with unit values
at the half activation voltage of the Boltzmann function.

The figure illustrates these relations, noteworthy, by means of teaching tools (www.clabs.de)
that are widely used in medical and other life-science faculties. While the original equations, espe-
cially for the rate constants, are difficult to interpret, all curves of the actual version are reflecting
actual measures as they are described in conventional physiology textbooks. The same strategy
of simplified but physiologically justified simulations has been used for the implementation of a
conductance based HH-type model of a chemical synapse. In this case, the focus was laid on clini-
cally relevant drug effects [4]. In any case, the most important point is that the model is adjusted
to the specific task and refers to the physiologically and/or clinically relevant measures. Hodgkin
and Huxley, 60 years ago (www.cnsorg.org/hodgkin-huxley60), have provided an explanation
for action potential generation and conduction in the squid giant axon with exceptional success,
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However, the main reason for the enormous impact of their work in neurophysiology and beyond
was the introduction of a revolutionary new concept that turned out to be physiologically appro-
priate and extraordinarily flexible for successful adjustment to other tasks, allowing simplifications
where possible and extensions whenever required.

Figure 1: The model generates action potentials
(a) on the basis of different first order time delays
(b) and sigmoid voltage dependencies (c) of fast Na+-
channel activation followed by Na+-inactivation and
slower K+-channel activation. For numerical values
see [3] or www.clabs.de.

For the K+-channel, additionally the rela-
tions between the sigmoid activation curve
and accordingly adjusted exponential voltage
dependencies of transition rates between open
and closed states are shown (d). Black dots
indicate the relative open times (p) at different
voltages (V ) as obtained from 40 ms simula-
tions runs as shown by only a few examples
in (e). The exponential curves of opening and
closing probabilities po and pc (given per ms)
are implemented symmetrically to the half acti-
vation potential of the sigmoid activation curve
with a = 0.11 and b = (−)0.035.

Keywords: Hodgkin-Huxley-model, Boltzmann
function, transition rate.
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Recent imaging techniques have revealed a qualitative difference between primary sensory cortices.
As neighbouring neurons of the primary visual cortex (V1) specifically respond to light stimuli
presented at similarly localized areas of the eye field, its principal topography, called retinotopy,
is smooth. By contrast, the topography of the primary auditory cortex (A1), the tonotopy, is disor-
dered [1]. This discrepancy appears to be inconsistent with the canonical model of the neocortex.

We hypothesize that V1 and A1 still use a common coding strategy and that it produces the
dissimilar topographies by adapting to their inputs of contrastive statistics. Adaptation to natural
image statistics has successfully explained the response properties of V1 neurons [2] and even their
smooth topography [3], whereas this line of research has been limited to A1. We focused on how
their natural inputs statistically differ: natural images show only local correlations, while natural
sounds typically exhibit correlations between distant frequencies. Learning of the non-local statistics
might result in topography dissimilar to that of V1.

To test the hypothesis, we used natural sounds as the input to a model that has been previ-
ously proposed for the smooth topography of V1, topographic independent component analysis [3],
whose input was originally natural images. Learning of natural images, as reported, resulted in
a smooth topography similar to V1, whereas the same algorithm applied to natural sounds exhib-
ited a more disordered topography due to natural sound statistics that have distant correlations.
This A1 model adapted to natural sounds predicted that the disorder might not be totally random:
frequency selectivities of neighbouring neurons would be biased toward being harmonic. Further-
more, non-linear responses similar to pitch selectivity were found in the model’s second layer, which
originally modelled the complex cells of V1. These results suggest that V1 and A1 exhibit dissimilar
topographies owing to the difference of inputs, even though they share an adaptive coding strategy.
Keywords: Tonotopy, Primary auditory cortex, Topographic independent component analysis.
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Background: Mammals are able to localize sound sources with high accuracy. There exist multiple
mechanisms of sound azimuth perception in neural circuits of various animals [4]. All the mecha-
nisms must use one neuron as coincidence detector. In previous work, the model of the first binaural
neuron as a stochastic coincidence detector has been introduced [5]. The neural fiber delay line is
not the only way, how is the brainstem neural circuit computation implemented. Another plau-
sible way of neural computation is the stochastic interpolation mechanism realized by the synaptic
circuitry [6].
We describe in detail selected synaptic characteristics of the first binaural neuron. This neuron is
in mammals in the nucleus of the medial superior olive. This is the first neuron from the periphery
receiving post-synaptic potentials from both sides.
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Figure 1: Spike generation in dependence on the time delay.
The narrower curve (thick line) shows the firing probability in a full model with both excitation
and inhibition. The broader bell-shaped curve (thin line) shows the output in response to the
excitatory input only (with the inhibition disconnected, in analogy to animal experiments abolishing
inhibition). Vertical lines show the widths of time windows used for the coincidence detection.
The parameters of the neuron model are described in the text. Note that both axes are shown in
normalized, dimensionless arbitrary units.

Model: In the presented model, summation of synaptic potentials is expressed in analytical form
using formulas for the time course of excitatory and inhibitory post-synaptic potentials, we call
them activations for short. The model neuron is the generalized perfect integrate-and-fire model.
When the sum of the post-synaptic potentials exceeds the threshold, neuron fires an action potential
and its membrane potential is reset back to the resting state. The time range during which the action
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potential is generated is calculated using inversion function of the time course of the sum of all the
activations.
Several formulas describing synaptic activations exist, namely alpha-function, double exponential
and kinetic model, ordered from the simplest to the most complex. The double exponential proved
to be the most suitable for our calculations with the inversion function, therefore we use it. In the
full description of the model circuit, both excitations and inhibitions are used.

Results: We use typical parameter values based on the fitting and exploration of experimental data
[4, 7]. The rise times (leading edges) last typically in order of one millisecond. This compares well
with typical maximum interaural time difference, which is for example in gerbil about 330 µs [4].
We express the threshold height normalized by the maximum activation amplitude. This way we
have no free parameter left. Both the deterministic and stochastic analytical calculations with the
model show that the neural computing with post-synaptic potentials is essential for the mechanisms
implemented by this neural circuit. Figure 1 shows comparison of the full model with the model
with excitation only. This figure well compares to experimental results discussed in [1, 4].

Conclusions: The model is consistent with data acquired in electro-physiological experiments [1].
An analytical calculation using the Laplace transform was used to obtain similar activation curves
[3]. Calculation with delays gives comparable results obtained with the use of the concept of
neuronal arithmetic [2, 6].

Keywords: Medial superior olive, Stochastic interpolation model, Excitatory and inhibitory post-
synaptic potentials.
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Abstract

Using the three-dimensional Bonhoeffer-van der Pol (BVP) equations, the dynamics of globally
coupled neuronal oscillators is examined. There are interesting phenomena such as very slow phase-
locked oscillations (compared with the inherent period of each uncoupled neuronal oscillator) and
the death of all oscillations. We show that this slow synchronization is mainly caused by the exis-
tence of “fast" oscillators. The variability of interspike intervals (ISI’s) and noise effects on the
spiking are also studied.

Introduction

In order to clarify how the spiking and biological rhythm are regulated in a network of neurons, a
population of globally coupled neuronal oscillators was studied [1] using the Hodgkin-Huxley (HH)
equations [2] as a model of single neuronal oscillator. In this coupled system, it was shown that
the neuronal oscillators presented a very slow phase-locked or synchronized oscillation compared
with the inherent period of each uncoupled neuronal oscillator. The generation mechanism of these
phenomena, however, has not been clarified yet.
In this study, a population of globally coupled neuronal oscillators is analyzed using the three-
dimensional BVP equations [3, 4] which are much simpler single neuron model than the HH equa-
tions. Similarly to the case of the HH equations, there are interesting phenomena such as very slow
phase-locked oscillation and the death of all oscillators. We investigate the generation mechanism
of these global oscillations.

A population of globally coupled neuronal oscillators

Let us consider a population of the extended (three-dimensional) BVP oscillators globally coupled
through a common buffer (a mean field) [1, 5]:

d x i

d t
= x i −

x i
3

3
− yi − zi + Iext+ D(w− x i), (1a)

d yi

d t
= η(x i − a yi), (1b)

dzi

d t
= εi(x i − bzi), εi � 1, (1c)

dw

dt
=

D′

N

N
∑

i=1

(x i −w), (i = 1, ..., N) (1d)
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where x i corresponds to the membrane potential and yi is the refractory (or inhibitory) variable
of the i-th neuron. zi also denotes a refractory variable, but its dynamics is supposed to be much
slower than that of yi . The variable w denotes the mean field of the neuronal population, and the
parameters D and D′ (for the sake of simplicity, we suppose D ≡ D′ hereafter) denote the coupling
strength between each neuron and the mean field.
When D = 0 in eq. (1), this system becomes a population of uncoupled BVP oscillators. Because the
slow variable zi is added to the original (two-dimensional) BVP equations [6] (or FitzHugh-Nagumo
(FHN) equations [7]), we can see peculiar phenomena such as chaos and very slow spiking in the
single neuron model [4].

Local stability of the equilibrium point and slow synchronization

If the coupling coefficient D is large enough, the population of oscillators show synchronizations
or phase-locked oscillations. The ISI or the period of such synchronized oscillations is around the
single oscillator’s inherent period at first, but it grows up abruptly for the increase of D. If D is
increased further, the slow phase-locked oscillation terminates and the equilibrium point becomes
stable through the Hopf bifurcation. Therefore, we suspect that the “local" stability of the equilib-
rium point has a certain relevance to the slow synchronized oscillation, although the synchronized
oscillation is a “global" behavior. Although the size of the Jacobian matrix of eq. (1) at the equilib-
rium point is very large: (3N + 1)× (3N + 1), the analysis of its eigenvalues can be reduced to that
of lower dimensional matrices[5]. From this analysis, we found the fact that “fast" oscillators are
important for the emergence of very slow synchronization.

Variability of interspike intervals and noise effects

In the presence of noise, the single (three-dimensional) BVP neuronal model shows various inter-
esting behavior such as noise-induced acceleration and deceleration and various ISI’s variability. We
also study the noise effects on the synchronization and the ISI variability in the globally coupled
neuronal population.
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We consider a model for a neural network, which is a stochastic process on a random graph.
The neurons are represented by the "integrate-and-fire" processes. The structure of the graph is
determined by the probabilities of the connections, and it depends on the activity of the network.
We investigate the dependence between the initial level of sparseness of the connections and the
dynamics of activation in the network. We find a critical window for the level of sparseness which
yields optimal (in some sense) performance of a network.
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A good deal of recent work has dealt with the problem of inferring the connections in a network
from a record of the activity of its units. In particular, attention has focused on statistical modeling
of neural networks based on recorded spike trains[1]. However, this work has assumed that data
are available from all the units in the network, a condition that never applies in actual experiments.
Here we lay a foundation for treating more realistic situations by developing learning algorithms
for networks of binary stochastic units containing “hidden” in addition to “visible” units. For Gibbs
equilibrium networks, with symmetric connection matrices, this problem is solved by the classic
Boltzmann learning algorithm. For the more general case of asymmetric connection matrices, this
problem was also solved many years ago (“back-propagation in time”) for networks of continuous-
valued units. However, learning in networks of stochastic binary units with arbitrary connection
matrices has not been treated previously. We derive an algorithm for this case here.
In the network model we consider, units can take on the values ±1 and are updated synchronously
according to the stochastic rule

P[Si(t + 1)|S(t)] = 1
2
[1+ Si(t + 1) tanh Hi(t)], Hi(t) =

∑

j

Ji jS j(t) =
∑

j

Ji js j(t) +
∑

b

Ji bσb(t).

(1)
The likelihood of a history of the system is P[S] =

∏

t i P[Si(t + 1)|S(t)]. We denote the Nv visible
units by si and the Nh hidden ones by σi: S = (s,σ). The likelihood of a history of the visible units
s is obtained by marginalizing out the hidden units, and the learning rules are found by gradient
ascent on the resulting log likelihood log P[s] = log

∑

σ P[s,σ]. They have the form

∆Ji j ∝
∂ log P[s]
∂ Ji j

=
∑

t

∑

σ
[Si(t + 1)− tanh Hi(t)]S j(t)P[σ|s]. (2)

The weight P[σ|s] = P[s,σ]/P[s] in this average is like a Boltzmann weight for a statistical-
mechanical problem for the hidden units with an energy Es[σ] = − log P[s,σ] and partition func-
tion P[s] =
∑

σ P[s,σ]. If there are no hidden-to-hidden connections, P[s,σ] factorizes into a
product of independent factors for each time step in the data. In this case, the statistical-mechanical
problem to be solved for each time step has Nh variables. In the general case, P[s,σ] does not
factor, and the problem to be solved has NhT variables σi(t), where T is the number of time steps
in the data. The energy Es[σ] contains terms describing “external fields" acting on each σi(t) from
the visible data s j(t ± 1) at both the previous and subsequent time steps, terms which couple each
σi(t) with all σ j(t±1), and nonlinear couplings among the different σi at each t. With knowledge
of the normalizing denominator P[s] (the partition function of this auxiliary statistical mechanical
problem), the averages in (2) can be evaluated. This constitutes the exact algorithm for finding the
couplings Ji j . The evaluation can be done exactly for small Nh and T ; for large systems and/or data
records one can resort to Monte Carlo simulations.
One can develop a mean field theory for this problem, valid for large, densely connected networks,
based on a free energy Fs[m] which is a function of “magnetizations” mi = 〈σi〉. It has the form
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Fs[m] = Es[m] − S[m], where S[m] is a sum of single-unit entropies −((1 + ma)/2) log((1 +
ma)/2)− ((1− ma)/2) log((1− ma)/2) for units with constrained magnetization ma. Minimizing
Fs[m] leads to coupled mean-field equations

tanh−1 ma(t) =
∑

j

Ja js j(t − 1) +
∑

b

Jabmb(t − 1)

+
∑

j

[s j(t + 1)− tanh H j(t)]J ja +
∑

b

[mb(t + 1)− tanh Hb(t)]Jba (3)

(where now σb(t) is replaced by mb(t) in the expression for Hi(t) in (1)) for the ma(t). There
are many (NhT) of these equations, but they can be solved much more quickly than running Monte
Carlo simulations for NhT units. They have a simple interpretation: The first line is just the input
to unit a from the visible and hidden units, respectively, at the preceding time step. The second
line had the form of back-propagated errors from visible and hidden units at the following time
step. The combined effect of these influences determines the appropriate target on the hidden
units to be used in the learning rule (2). This result is a generalization of an old formulation of
back-propagation learning for conventional networks with a single hidden layer in terms of such
“internal representations”[2].
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Bibliography

[1] Hertz, J., Roudi, Y., Tyrcha, J. (2011) Ising Models for Inferring Network Structure From Spike
Data, to appear in: Principles of Neural Coding (S. Panzeri and R. Quian Quiroga, Eds), CRC
Taylor and Francis; arXiv:1106.1753

[2] Krogh, A., Thorbergsson, G.I., Hertz, J.A. (1990) A Cost Function for Internal Representations,
NIPS Proceedings, 2: 733-740.

142



Computational investigation of Glutamate-AMPA interaction in
synaptic transmission

Francesco Ventriglia
Istituto di Cibernetica “E.Caianiello" del CNR

Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
franco@ulisse.cib.na.cnr.it

Vito Di Maio
Istituto di Cibernetica “E.Caianiello" del CNR

Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
vito.dimaio@cnr.it

The excitatory postsynaptic response, following presynaptic activity, is the mechanism that neurons
use to transfer the information coded in the spike sequence of the presynaptic neuron to the postsy-
naptic one in the brain. Because of this key role all the elements present in the synaptic structure,
which are thought to give a contribution in shaping the postsynaptic excitatory response, is object
of very attentive experimental and computational investigation. In this framework, mathematical
models and computer simulations are providing valuable information that could not be obtained
experimentally due to technical limitations.
To clarify the mechanisms involved in stochastic variability of postsynaptic excitatory response, in
previous papers we proposed a model of excitatory synapse based on a detailed geometrical descrip-
tion of the synaptic structure. The model was based on Brownian motion of Glutamate (GLUT)
molecules in the synaptic cleft, described by Langevin Equations in a discretized form with a very fine
time step (40 f emtoseconds) and on a detailed description of their binding to post-synaptic AMPA
and NMDA receptors although only the AMPA response was simulated since,in normal conditions,
NMDA are blocked by Mg+̂+ ions [6, 7, 8, 9]. Herein, we present an update of the model based on
new values of the model parameters obtained by more recent experimental findings [1, 2, 3, 4, 5].
In a recent report we studied the effect of AMPARs trafficking on the shape of the miniature Excita-
tory Post Synaptic Currents (mEPSCs) produced by AMPARs activation demonstrating the possibility
to define an inferior limit for the binding probability between the molecules of GLUT and receptor
binding site[9].
In the present work, we present a series of computational experiments intended to study the effect
of the the position of the binging site by using a better description of the 3D structure and dimension
of the AMPA receptors and by considering that they are elements protruding from the PSD [5]. The
presence of filaments in the synaptic cleft, connecting the pre and postsynaptic cells and located
around the PSD area, is also considered. Moreover, the decreasing of the Excitatory Post Synaptic
response with the increasing of the eccentricity of the position of the releasing vesicle with respect
to the center of the Active Zone (AZ), is studied by the space distribution of number of collisions
of GLUT molecules on receptor binding sites. At last, the dynamics of the binding process has been
studied by means of the description of the inter-collision times among single Glut molecules and
the binding sites of the several AMPA receptors which they visit without success until till the final
binding occurs (see Figure 1).
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Figure 1: Sequence of time intervals between successive impacts of a GLUT molecule on the
binding sites of AMPA receptors, which terminate with a successful binding. Four different receptor
sites were visited. First impact occurred after 190.349398720µs on receptor 13. After it passed
through receptors 26 and 27 before binding on receptor 56 at time=199.963628560µs. Main
simulation parameters: Releasing position on AZ, x0 = 90nm; Released Molecules=775; Binding
Probability=0.0136; AMPARs Number=55; NMDARs Number=13. The horizontal axis shows the
values of the decimal logarithm of the time differences between two successive impacts.
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The principle of efficient coding [1] is that sensory systems take advantage of the statistical regu-
larities of the natural environment to focus their limited resources on aspects of stimuli that are
unpredictable. This is a powerful framework for understanding retinal design principles. Whether
it is also applicable to cortical visual processing is less clear, as there is no “bottleneck” comparable
to the optic nerve, and much redundancy has already been removed by the retina. Here, we present
psychophysical and physiological evidence that regularities of high-order image statistics are indeed
exploited by central visual processing, and at a surprising level of detail. This convergence moti-
vates a more detailed psychophysical study of sensitivity to image statistics, which in turn suggests
a hypothesis about natural image statistics.

The starting point is a recent analysis of high-order correlations in natural images [2]. This study
showed that for natural images, high-order correlations in certain specific spatial configurations
are informative, while high-order correlations in other spatial configurations are not, as they can
be accurately guessed from lower-order ones. To determine the relevance of this dichotomy for
visual processing, we construct artificial images (visual textures) composed either of informative or
uninformative correlations. We find that the informative correlations are visually salient, while the
uninformative correlations are nearly indistinguishable from random.

To understand the physiological origin of these perceptual signals, we recorded from single neurons
in the visual cortex (V1 and V2) of the macaque. Overall, we found that neuronal responses mirror
the psychophysical findings: many neurons respond differentially to the informative statistics; few
respond to the uninformative ones. Laminar analysis showed that the differential responses to
high-order correlations first become prominent in the supragranular layers of V1. The sensitivity
to high-order statistics increases further in V2, and exceeds 80 % in its supra- and infragranular
layers. These findings indicate that selective sensitivity to high-order correlations arises as the result
of intracortical processing in V1, and is further enhanced in V2.

Motivated by these findings, we undertook a further analysis of human sensitivity to local image
statistics of low and high order [3]. We focused on image statistics that characterize 2x2 neighbor-
hoods in binary images; this is a 10-dimensional space. We find that human visual sensitivity to these
image statistics is highly selective, and that interactions between image statistics are well-described
by an ellipsoidal isodiscrimination surface. The shape and slant of this ellipsoid is consistent across
observers. We hypothesize that the directions of peak sensitivity – which are not the mathematically
“natural” directions – correspond to the statistics that are most informative about natural images.
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Decision-making is considered the most essential phase in volitional act. This is supposed to occur in
the temporal window that follows sensory processes and before the motor response confirming that
a decision was made. Let us consider a scenario where one party, the “proposer”, offers how to split
a finite resource (e.g., a sum of money). If the other party, the “responder”, accepts the deal, the
resource is distributed according to the proposal, and if he rejects, both parties get nothing. This kind
of situation is similar to an iterative implementation of the the Ultimatum Game (UG) [1], which
is originally a one-shot bargaining game with no communication and no negotiation. Continuous
EEG was recorded using 60 scalp Ag/AgCl active electrodes mounted on a headcap and referenced
to the linked earlobes. Event-related potentials (ERPs) from scalp electrodes were recorded during
the whole decision-making process. We observed two distinct components at most electrode sites
during both conditions of UG. The first component is an early positive wave with a peak latency
of about 200 ms, identified as ‘P200’. The second component is a negative wave peaking at about
350 ms, identified as Feedback-Related Negarivity, ‘FRN’. P200 was peaking with the same latency
for proposer and responder decision-making. In the responder condition we observed an additional
positive component, occurring after P200, visible along all midline sites, but with amplitude larger
at frontal site (FCz). The latency of FRN was bigger in proposer vs. responder condition at all sites,
but in responder condition the amplitude of the wave was similar at all frontal sites. In the proposer
condition at right frontal sites (F2 and F4) the amplitude of this wave was smaller than at left
frontal sites (F1 and F3). These results suggest different coding of decision-making for proposers
and responders and extend previous results [2]. In UG the proposer has to store a specific value in
the in short-term memory buffer and, then, engage retrieval processes to enable his offer after the
instruction.
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A fascinating property of the sense of smell is that odor mixtures often have distinctive emergent
qualities, and their individual components are consequently difficult to identify. Here, we make the
hypothesis that the emergence of a new quality of an odor mixture is initiated from the peripheral
olfactory mucosa. In order to test our hypothesis, “the blending mixture perception” was studied in
the Rat at the peripheral and behavioral level.
To this aim, single olfactory receptor neurons (ORN) responses were electrophsiologically recorded
in response to (1) the binary ethyl maltol (Emalt) + ethyl isobutyrate (Eiso) mixture from which
emerge the pineapple fragrance and (2) each of the molecules. Amplitude of the ORNs responses
was plotted as a function of concentrations and the curve obtained for the mixture showed a clear
dominance of Eiso or a suppressive or a amplifying effect of Emaltol regarding the response to Eiso
when used alone; these 3 effects being equally observed. For the behavioral study, animals were
submitted to a conditioned odor aversion (COA) paradigm consisting of the association between
Emalt or Eiso (conditioned stimuli) and the administration of a gastric malaise (0.15M Lithium chlo-
ride i.p. injection). The conditioned aversion to Emalt or Eiso was assessed by presenting successive
discriminative two-bottle tests during which the animals had to choose between the conditioned
odor versus the mixture Emalt+Eiso.
The results showed that animals conditioned to Eiso showed a clear aversion to the mixture suggesting
an elemental strategy that corresponds to the detection of one component of a mixture in order to
avoid it. By contrast the animals conditioned to Emalt failed to develop a clear aversion to Emalt
thus rendering the absence of conditioned Emalt+Eiso aversion difficult to interpret. Our results
obtained at the cellular level showed that the pineapple “accord” induced a remarkable ratio of
synergy which may sign an “accord” specificity.
At the behavioral level, our data suggest that animals developed an elemental strategy coding thus
rendering possible the detection of the Eiso in the pineapple “accord”. The status of Emalt needs to
be précised using other types of conditioning which will use rather reinforcement. As a conclusion
even in “accord” the different components can present different status regarding discriminative
processes.

Keywords: Odor coding, odor mixture, conditioned odor aversion, behavior
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The coding of sensory stimuli in the neural response is a fundamental property of neural systems
that impacts many of its properties. The coding scheme also determines how many different stimuli
a population of neurons can represent. Although the coding of single stimuli has been studied
extensively, coding of multiple stimuli has been studied far less. Here we study the representational
capacity in the visual system when stimulus pairs are represented simultaneously. We assume that
the response to the individual stimuli is given, and that the neurons interacts non-linearly to form
the response to the pair. Using a Bayesian read-out we find that using a linear sum leads to a smaller
capacity, than a maximum-like interaction. Thus non-linear interaction improve coding capacity. The
results provide a novel interpretation for the non-linear interaction observed experimentally.
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During neural development, the growing axons frequently fasciculate, i.e. form bundles of parallel
axons. In the basic process leading to fasciculation, an advancing growth cone encounters the
shaft of another axon, attaches to it and follows it. Fasciculation is crucial for setting up correct
connectivity in various parts of the nervous system.
In addition to its role in guiding axon growth, fasciculation also influences neural activity. In tightly
packed bundles, the electric field arising from an action potential traveling in one of the axons
significantly affects the transmembrane voltage in the other axons. Such ephaptic coupling has
been experimentally shown to result in synchronized propagation of spikes within the bundle and in
changes in conduction velocity in the individual axons. It has been predicted that ephaptic coupling
may also trigger action potentials in inactive axons, leading to spreading of electric activity across
the bundle.
Our study is motivated by the biology of the mammalian olfactory system, in which axon fascicu-
lation plays an essential role. The nasal epithelium contains about 106 olfactory sensory neurons,
which belong to approximately 1000 distinct types. The axons progressively fasciculate in the olfac-
tory nerve and on the surface of the olfactory bulb; axons of each type type finally converge into
a specific glomerulus in the bulb. Type-specific axon-axon interactions are presumed to play a key
role in the fasciculation process. The axonal type is defined by which odorant receptor protein is
expressed in the neuron. It has been shown, however, that the expression of specific types of cell
adhesion molecules is strongly correlated with this axonal type.
We have developed a mathematical model of fasciculation in a population of growing axons with
adhesive interactions. The axons are represented as directed random walks in two spatial dimen-
sions; each random walker (growth cone) interacts with the trails (axon shafts) of other random
walkers. In the simplest version of the model [1], all axons belong to the same type and have strong
adhesive interactions, so each newly growing axon encountering an existing fascicle will join the
fascicle and never detach. We introduce a turnover of axons (corresponding to adult neurogenesis
in the olfactory epithelium) and study the resulting slow dynamics of axon fascicles. In the general
version of the model [2], we introduce axons of multiple types, with type-specific interactions and
the possibility of detachment of axons from fascicles. The resulting dynamics leads to fasciculation
patterns for which we compute quantities such as the distribution of fascicle sizes, the increase of
mean fascicle size in the direction of growth, and the purity of fascicles according to axon type.
There are indirect experimental indications [3] that ephaptic coupling between axons of olfactory
sensory neurons leads to significant modifications of their electric activity. Ephaptic coupling in
fascicles of these axons has been analyzed computationally by Bokil et al. [4], who predicted that
additional action potentials are triggered especially within fascicles of small and intermediate size.
The overall effect of ephaptic coupling in this system is therefore expected to depend sensitively on
the detailed pattern of axon fasciculation.
We use the axon configurations generated by our fasciculation model to evaluate the effects of
ephaptic coupling in a population of fasciculating axons. Based on the analysis of Bokil et al. [4],
we trigger additional action potentials when the ratio of the number of active axons to the the total
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number of axons in a given fascicle exceeds a critical value. We discuss the parameter ranges in
which ephaptic coupling leads to a nontrivial spreading of the sensory electric activity. For config-
urations with 2 types of axons (carrying distinct sensory information), we evaluate the degree of
cross-activation between the two axon types; such cross-talk is expected to be detrimental to effi-
cient neural processing in the olfactory bulb.

Keywords: axon guidance, random walk, ephaptic coupling
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