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Model of fasciculation and sorting in mixed populations of axons

Debasish Chaudhuri,1,* Peter Borowski,2,† and Martin Zapotocky3,‡
1Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
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We extend a recently proposed model [Chaudhuri et al., Europhys. Lett. 87, 20003 (2009)] aiming to describe
the formation of fascicles of axons during neural development. The growing axons are represented as paths
of interacting directed random walkers in two spatial dimensions. To mimic turnover of axons, whole paths
are removed and new walkers are injected with specified rates. In the simplest version of the model, we use
strongly adhesive short-range inter-axon interactions that are identical for all pairs of axons. We generalize the
model to adhesive interactions of finite strengths and to multiple types of axons with type-specific interactions.
The dynamic steady state is characterized by the position-dependent distribution of fascicle size and fascicle
composition. With distance in the direction of axon growth, the mean fascicle size and emergent time scales
grow monotonically, while the degree of sorting of fascicles by axon type has a maximum at a finite distance.
To understand the emergence of slow time scales, we develop an analytical framework to analyze the interaction
between neighboring fascicles.
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I. INTRODUCTION

Reaction-diffusion phenomena arise in diverse fields such
as physical chemistry [1] or developmental biology [2]. In cer-
tain reaction-diffusion systems, the process of path aggregation
occurs, in which preferred paths of the diffusing elements are
established and evolve in time. The path aggregation process
is found in diverse realm of nature, e.g., in formation of insect
pheromone trails [3–5] and human walking trails [6,7], in
aggregation of trails of liquid droplets moving down a window
pane, and in river basin formation [8,9].

One class of the mathematical models in which path
aggregation processes have been studied is the active-walker
models [7,10] in which each walker, while moving through the
system, changes the surrounding environment locally, which
in turn influences the later walkers. Ant trail formation is an
example of such a process [3,4]. An ant leaves a chemical
trail of pheromones on its path that the other ants can sense
and follow. Evaporation of pheromone leads to an aging of
these trails. Similarly, the mechanism of human and animal
trail formation is mediated by the deformation of vegetation
that generates an interaction between earlier and later walkers
[6,7]. This deformation, and therefore its impact, decays
continuously with time [7].

In a recent Letter [11] we analyzed the dynamics of path
aggregation using a simple model that belongs to the class
of active walker systems discussed above. In contrast to the
active-walker models, in our model the individual paths do
not age gradually but rather maintain their full identity until
they are abruptly removed from the system. This particular
rule for path aging was chosen to allow application of our
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model to the process of axon fasciculation (formation of axon
bundles),1 which we discuss below and more in detail in
Sec. II.

In order to develop neuronal connections, sensory neurons
born in peripheral tissues project their axons (long tubular part
of the neuron cell that conducts electrical excitations) toward
target regions in the brain. Frequently, multiple axons come
together to form axon fascicles and may sort according to the
cell type of the neuron to which the axon belongs. This fascicle
formation and sorting can be driven by inter-axon interactions
leading to, e.g., a pretarget spatial map in the mammalian
olfactory system [12–14].

In our model, the axons are represented as directed random
walks in two spatial dimensions. In Ref. [11] we formulated
and analyzed the simplest version of the model, in which
all axons belong to the same type and have strong adhesive
interactions, so each newly growing axon encountering an
existing fascicle will join the fascicle and never detach. In
the presence of axon turnover (aging of the paths), a steady
state characterized by a distribution of fascicle sizes [11] is
eventually established. The focus of Ref. [11] was on the
analysis of the surprisingly long time scales that emerge from
this simple dynamics.

In the current paper, we significantly extend this theoretical
analysis. We develop an analytical description of the dynamics
of two neighboring fascicles and show how the slowest mode
of their interaction gives rise to the slow time scales observed in
Ref. [11]. We also systematically discuss the limited analogies
that can be made between our two-dimensional model and one-
dimensional models of particle coalescence [15], aggregation
[16], and chipping [17,18]. These analogies are useful for
the understanding of stationary quantities of our model such
as the distribution of fasicle sizes and the distribution of

1Throughout the text we use the term axon fasciculation rather than
axon bundling as the term axon fasciculation is more standard in
biological literature.
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inter-fascicle separations. The main contribution of the current
paper, however, is to generalize the previous model of Ref. [11]
to attractive interactions of finite strength (so detachment
of axons from fascicles is possible) and to multiple axon
types with type-specific interactions. Such a generalization
is necessary to allow the biological application of the model.

In the following section we give a detailed biological
motivation for the model we consider. In Sec. III we introduce
the model and the Monte Carlo (MC) simulation scheme that
we use to investigate its properties numerically. Followed
by this, in Sec. IV, we give a brief overview of guiding
concepts that will recur in the rest of the paper. In Sec. V,
we present a detailed analysis of the system containing axons
of a single type that follows the “always attach, never detach”
rule. We extend the numerical results of Ref. [11] for the
properties of the steady state and for the emerging time
scales. We review the analytical framework of single-fascicle
dynamics, developed in Ref. [11], and significantly extend
it by deriving results for the interaction dynamics of two
neighboring fascicles. In Sec. VI we numerically study the
effects of nonvanishing detachment rates of axons from a
fascicle. In Sec. VII we discuss some limited analogies of
our model to one-dimensional aggregation and coalescence
processes. In Sec. VIII we discuss the sorting of fascicles
by axon types in a system containing two types of axons, the
simplest manifestation of a mixed population of axons. Finally,
we provide a summary of main results in Sec. IX and conclude
in Sec. X by discussing the outlook for biological applications
of our model.

II. BIOLOGICAL MOTIVATION

Sensory neurons located in peripheral tissues connect to
more central locations of the nervous system via axons [19].
During the development of an organism, axons of newly
maturing sensory neurons must establish connections to the
proper location. Axon growth is initiated at the soma (main
cell body) of each neuron and proceeds with a typical rate of
extension 100 μm/h [20]. The direction of growth is controlled
by the dynamic growth cone structure at the tip of the axon.
The growth cone probes the environment in its vicinity and
can detect gradients of spatially distributed chemical signals.
In the absence of strong directional signals, the path of the
growth cone is highly stochastic [21,22], while in the presence
of appropriate guidance cues, the direction of motion becomes
strongly biased. The overall direction of axon growth may
be guided by spatial gradients of chemical cues generated by
the target. A number of distinct molecular guidance cues that
influence neuronal development have been identified in recent
years [23,24], and the response of the growth cone to graded
cues has been studied theoretically [25–27]. In this work, we
do not directly model the axon guidance by graded chemical
cues but subsume their influence into the setup of our model
by giving all axons a common preferred growth direction.

In this article, we study the collective effects that arise
from direct local interactions among the growing axons.
When such interactions are attractive, the growth cone of
a newly growing axon tends to follow the tracks (i.e., the
axon shafts) of older axons. The strength of this interaction is
governed by the type and expression level of the relevant cell

adhesion molecules [20,28]. The resulting dynamics can lead
to selective formation of fascicles of axons [29–31], a common
and essential phenomenon in the developing nervous systems.

An additional important aspect included in our model is
that of neuronal turnover. During development, a significant
portion of sensory neurons with fully grown axons may die
and be replaced by younger sensory neurons that attempt a
new connection to the brain. For example, up to 80% of retinal
ganglion cell axons are lost during the development of the
visual system in the cat [32,33]. In the mammalian olfactory
system, both neuronal birth and death persist throughout the
life of the animal, leading to a dynamical steady-state pattern of
connectivity. In particular, the average lifetime of an olfactory
sensory neuron in the mouse is of the order of 1–2 months [34],
which is less than one-tenth of the mouse’s lifespan.

To motivate the introduction of multiple types of axons into
our model, we now briefly discuss the intricate connectivity
pattern of the mammalian olfactory system, which implements
the sense of smell. In the mouse, the adult nasal epithelium
contains approximately 106 olfactory sensory neurons, which
send their axons through the olfactory tract to the olfactory bulb
in the forebrain. Remarkably, the sensory neurons belong to
approximately 1200 distinct types [35], and the axons of each
type connect to a distinct neuronal structure, a glomerulus,
on each olfactory bulb [35,36]. Such precise connectivity is
fully established only after several turnover periods, while in
newborn mice, split glomeruli and glomeruli that mix several
axon types are often observed [37].

In olfactory sensory neurons, elegant genetic analysis
shows that the axonal type is determined by the expression
of a specific odorant receptor gene [38–40]. Physiological
experiments on mice show that the expression of specific
types of cell adhesion molecules, which dictates the strength of
adhesive forces between axons, is strongly correlated with this
axonal type [40,41]. A wide range of strengths of interactions
between axons may be generated through combinatorial
expression of multiple types of cell adhesion molecules.

In Fig. 1 we show configurations of olfactory axons as
observed in in vivo [39] and in vitro [42] experiments.
Figure 1(a) shows axons growing in the surface layer of the
left and right olfactory bulbs of a genetically modified mouse
(Fig. 1(L) of Ref. [39]). Only axons belonging to one type
of olfactory sensory neurons (expressing the M71 receptor
gene) are labeled; axons of other types are present but not
visible. The axons progressively fasciculate and terminate
in a glomerulus visible in the center of each half-image.
Figure 1(b) shows fasciculation of axons growing from an
explant of the rat olfactory epithelium (Fig. 7(a) of Ref. [42]).
In this case, the fluorescent labeling does not distinguish the
axonal type, and (with a high probability) the visible axons
belong to multiple types.

Our model aims to provide a quantitative framework
for evaluating the contribution of axon-axon interactions to
the formation of patterns described above. The presence of
turnover and multiple axon types in our model distinguishes
our work from previous theoretical studies of axon fascic-
ulation [43,44]. Our implementation of the individual axon
dynamics is particularly simple, to allow us to concentrate on
collective effects arising from interactions within a population
of axons.
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FIG. 1. (Color online) (a) Axons of olfactory sensory neurons of a specific type (M71) growing in the surface layer of the mouse olfactory
bulbs. Scale bar = 500 μm. The axons emerge (top) from behind the olfactory bulbs and grow toward the bottom. Note fasciculation as well
events of detachments of axons from fascicles. Figure adapted from Ref. [39]. (b) Axon growth (top to bottom) and fasciculation observed in
explant culture of rat olfactory epithelium on a laminin-coated coverglass. Scale bar = 100 μm. Axon type is not distinguished. Figure adapted
from Ref. [42].

III. MODEL AND NUMERICAL IMPLEMENTATION

A. Setup and interactions

In our model, each growing axon is represented by a
directed random walk in two spatial dimensions [Fig. 2(a)].
The random walkers (representing the growth cones) are
initiated at the epithelium (y = 0, random even x) with a
birth rate α, and move toward the bulb (large y) with constant
velocity vy = 1. In the case of multitype systems, a type is
assigned to each newly initiated random walker (specifically
in the simulations of Sec. VIII, the type is decided randomly
with equal probability for each of the two types). The trail
generated by a random walker (growth cone) is regarded as an
axon shaft. A forward moving directed random walker (growth
cone) interacts with trails (axon shafts) of other walkers. In the
numerical implementation on a tilted square lattice, at each
time step the growth cone at (x,y) can move to (x − 1,y + 1)
(left) or (x + 1,y + 1) (right). The probability p{L,R} to move
left/right is evaluated based on the axon occupancies at the
(x ± 1,y + 1) sites and their nearest neighbors (x ± 3,y + 1)
[see Fig. 2(a)]. At a given y, two axons are considered to
be part of the same fascicle if they are not separated by any
unoccupied sites (i.e., they are not separated by more than two
lattice spacings).

We assume a short-range attractive interaction between
each growth cone and the close-by axon shafts. The range
of interaction (two lattice spacings in our model) corresponds
biologically to the range of extension of sensory filopodia
from the growth cone (of the order of 10 μm). The attractive
interaction is mediated by cell adhesion between the growth
cone and the axon shafts. We assume that the interactions
are additive and type specific. For a given growth cone, the
model assumes a weak nearest-neighbor attraction Eo < 0 if
the neighboring axon shaft is of a different type and a stronger
attraction Eh (< Eo) if the neighboring axon shaft is of the
same type. In each time step, a growth cone at (x,y) attempts
a Monte Carlo move to the left (x − 1,y + 1) and to the right
(x + 1,y + 1) with probabilities 1/2. The moves are accepted

with probabilities

pL = min[1, exp(−δEl)],

(or pR = min[1, exp(−δEr )]) where

δEl = [nh(x − 3,y + 1) − nh(x + 3,y + 1)]Eh,

+ [no(x − 3,y + 1) − no(x + 3,y + 1)]Eo,

(δEr = −δEl) and the occupancy number nh denotes the
number of axons belonging to the same type as the growth
cone, while no is the number of axons of other types. Notice
that in calculating the difference in energy, the occupancy
of the positions (x ± 1,y + 1) does not appear, as their
contributions to the energy cost mutually cancel. Periodic
boundary conditions are used in the x direction. In this kinetic
MC scheme, we used parallel updates of all random walkers
in each MC step.

We now clarify the relation of the general model described
above to the model studied by us in Ref. [11]. In this simple
version of the model, all axons belonged to the same type and
the interaction between them was governed by the “always
attach, never detach” rule, which is the “zero temperature”
version of the above-mentioned general MC scheme, i.e., the
dynamics was a pure energy minimization process: pL = 1
(pR = 1) when δEl < 0 (δEr < 0); pL = pR = 1/2 in all
other cases. This is in contrast to the “finite temperature”
dynamics of the general model, in which there is a nonzero rate
for the detachment of growth cones from fascicles. Reference
[11] used sequential updates, in contrast to parallel updates
used in this paper. An additional difference is that in Ref. [11],
the interaction was not assumed to be additive, i.e., the strength
of interaction of a growth cone with a fascicle did not depend
on the number of axons in the fascicle.

Note that two fasciculated axons run parallel to each other
with their separation in x direction restricted within two lattice
spacings, the interaction range. Thus the typical width of a
fascicle containing multiple axons remains two to three lattice
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FIG. 2. (Color online) (a) Interacting directed random walks on
a tilted square lattice. A random walker (+) represents a growth
cone. For one walker, the possible future sites (�) and their nearest
neighbors (◦) are marked. The trail of a walker (line) models an
axon shaft. (b) A typical late-time configuration (t = 25T ) of a
system of axons belonging to two different types, r (red, light gray)
and b (blue, dark gray). The strength of the homotypic interaction
is Eh = −4 and that of the heterotypic interaction is Eo = −0.1.
The mean numbers of r and b axons at y = 0 are Nr

0 = Nb
0 = 50

and the system size is L = 800. (c) A typical late-time configuration
(t = 25T ) in a system with a single type of axons undergoing
energy-minimizing dynamics with system parameters L = 800,
N0 = 100. For the fascicle identified at y = 600 (arrow), D indicates
its basin and E is the interbasin free space.

spacings in our model. We do not implement any on-site
repulsion, i.e., axons are free to grow on top of each other.

In our model, we do not consider any relaxation dynamics
of axon shafts. This corresponds to the assumption of strong
adhesion of axons to the substrate, so that line tension on axons
cannot straighten out the local curvatures.

B. Turnover

To capture the effect of neuronal turnover, each random
walker is assigned a finite lifetime θ from an exponen-

tial distribution of lifetimes �(θ )dθ = 1
T

exp(−θ/T )dθ with
mean 〈θ〉 = ∫ ∞

0 θ �(θ )dθ = T . When the lifetime expires,
the random walker and its entire trail (i.e., the whole axon) is
removed from the system. The mean number of axons in the
system reaches the steady-state value N (y) = N0 exp(−βy),
where β = 1/T is the mean death rate per axon and the steady-
state occupancy at y = 0 is N0 = α/β. In the simulations, we
use T = 105 time steps and restrict ourselves to y � T/10.
The birth rate α is chosen so as to obtain the desired number of
axons N0 or, equivalently, the desired axon density ρ = N0/L

(ρ = 1/2 implies an average occupancy of one axon per site),
where L is the system size in the x direction. As we will show
in detail, the time scales needed to achieve the steady state
of fascicle size distribution can be very long compared to the
time scale T needed to achieve the steady-state value of the
total number of axons. A typical late-time configuration for
a system of axons involving two distinct axonal types with
type-specific interactions is shown in Fig. 2(b).

C. Parameters

In this section we briefly discuss the biological meaning
and physical values of the parameters in our simulations. In
our model the interaction range in the x direction is chosen to
be two lattice units. Since we assume only contact interactions,
this range of two lattice units corresponds to the length of a
filopodium that typically is 10 μm. Thus the lattice spacing in
the x direction is �x = 5 μm.

The time step �t in our model needs to be large enough
to allow the growth cone to integrate a signal and react to it.
Reference [22] suggests this time scale to be of the order of tens
of seconds; we choose �t = 60 s. This corresponds to a dif-
fusion constant (in x direction) (�x)2/2�t = 12.5 μm2/min
that compares well with in vitro observation for short time
scales up to tens of minutes [21]. Note that with this choice
of �t the mean lifetime of an axon T = 105 �t used in our
simulations corresponds to 69.4 days, quite typical of axons of
mouse olfactory sensory neurons [34]. The lattice unit in the
y direction is now chosen to give a reasonable growth velocity
vy . Choosing �y = 1 μm, we have vy = 60 μm/h, which is a
typical value for growing axons of sensory neurons [20]. Note
that with the above-mentioned choices, Fig. 2(b) corresponds
to a system size of 800 �x = 4 mm in the x direction and
104 �y = 10 mm in the y direction. These dimensions are
comparable to the size of the olfactory bulb in mice [35].

The effective interaction energies Eh and Eo should be
chosen to match the observed rates with which axons detach
from fascicles. We introduce the quantity πd = exp(E)/�y

that expresses the rate of detachment of one axon per unit
length of a two-axon fascicle given that the two axons interact
via E = Eh or Eo. Thus, a growth cone interacting with a
fascicle of n axons will follow the fascicle over the mean
distance Ly = π−n

d before it detaches. It is not straightforward
to use published experimental images to deduce E as, usually,
the size of the fascicle is not known, and the location at which
a growth cone first attached to the fascicle is not recorded. The
observed typical distance Ly varies widely depending on the
specific neural system, ranging from tens of micrometers to
centimeters. In our simulations, we use the range of homotypic
interaction strength Eh = −4 to −1, which corresponds to
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detachment rates πd = 0.02 to 0.37 μm−1. In Table I we list
the meaning and values of the parameters used in our model.

IV. OVERVIEW

We show in this paper that simple directed growth of
axons that interact via a short-range attraction leads to reliable
formation of axon fascicles, in the absence of any external
chemical guidance cue. Once a fascicle is formed its position
does not move appreciably; however, the fascicle size (number
of axons present in the fascicle) fluctuates. The turnover of
individual axons generates a slow dynamics of reorganization
of fascicles at a fixed y level.

In the simplest case (Sec. V), the system contains only a
single type of axons that grow and form fascicles via an energy-
minimizing dynamics (strong inter-axon interaction), so, once
attached, the axons do not leave a fascicle. For this case one can
uniquely assign a basin of each fascicle at any specified y level
[see Fig. 2(c)]. The basin size D of a fascicle is the interval
at the level y = 0 between the rightmost and leftmost axons
belonging to the fascicle [Fig. 2(c)]. Any axon growing from
within this basin must contribute to the fascicle size unless it
dies before reaching the specified y level. Thus, the average
number of axons that survive in a fascicle at level y (in the
steady state) is n̄ = D ρ exp(−βy). The axons initiated at the
opposite edges of the basin are expected to meet each other in
y � (D/2)2 steps of random walk in the x direction. Therefore,
one obtains the mean-field prediction for the mean fascicle size
n̄(y) � 2y1/2 ρ exp(−βy) up to y � (L/2)2, where complete
fasciculation occurs, i.e., n̄ = N (y).

In a system with finite detachment rates (Sec. VI), however,
growing axons can leave one fascicle and attach to another.
Thus, the fascicle basins overlap and axons introduced in
the basin of one fascicle can end up in a different fascicle.
Still the mean-field estimate of the increase of mean fascicle

TABLE I. Parameters of the model. Note that �x and �y are
the spacings of the coordinate system used to parametrize the tilted
lattice. The distance between the points of the tilted lattice shown in
Fig. 2(a) is 2�x in x direction and 2�y in y direction.

Value Value
Symbol Meaning (simulation) (physical)

�x Lattice spacing 1 5 μm
in x direction

�y Lattice spacing 1 1 μm
in y direction

�t Time step 1 60 s
T Mean axonal lifetime 105 69.4 days
N0 Mean number of 50 to 200 50 to 200

axons at y = 0
L System size 100 to 800 0.5 to 4 mm

in x direction
Eh Homotypic −4 to −1 Detachment rate

interaction strength πdh = 0.02μm−1

to 0.37 μm−1

Eo Heterotypic −0.1 Detachment rate
interaction strength πdo = 0.9 μm−1

size with y, shown above, turns out to remain approximately
valid (Sec. VI A). For higher detachment rates (weaker
interactions), the prefactor of the power-law growth is reduced,
corresponding to smaller fascicles. In the limit of extremely
weak interactions, each axon would grow independently of the
others, and no fasciculation is possible. This overall picture
remains intact even for systems having multiple axon types.
The dynamic steady state is characterized by a position (y) -
dependent distribution of fascicle sizes that shows a scaling
law. The peak of the distribution shifts toward larger fascicle
sizes at higher y levels (Sec. V B and Sec. VI B).

In a steady-state configuration at fixed time t [such as
in Fig. 2(c)] the axon fasciculation with increasing y may
be formally viewed as the evolution of an one-dimensional
diffusion-aggregation or diffusion-coalescence process [45].
These limited analogies can be used to approximately un-
derstand steady-state properties like distribution of fascicle
sizes and inter-fascicle separation (Sec. VII). However, the
full dynamics of our model has no simple one-dimensional
counterpart [11]. A projection of the dynamics onto one
dimension would involve complicated long-time correlations
between the random walkers.

The dynamics of fascicle reorganization can be character-
ized by the slow approach to steady state or by the steady-state
autocorrelation time for the mean fascicle size. These time
scales grow with y and may reach values orders of magnitude
larger than the mean axon lifetime T . In the absence of
detachment, the slowest mode of fascicle reorganization occurs
via partial exchange of neighboring basins (Sec. V D). In the
presence of detachment, in addition, the basin of one fascicle
can easily drain to another. Thus the time scales decrease with
decreasing inter-axon attraction (Sec. VI A).

In systems containing multiple types of axons with type-
specific interactions, we evaluate the degree of sorting S that
quantifies the typewise purity of the local environment of
axons (Sec. VIII). At steady state, S(y) shows a nonmonotonic
variation, with a maximum at some intermediate y. The
position and the value of the maximum depend on system
parameters like the mean density of axons ρ and the interaction
strengths. This nonmonotonicity is due to the attractive
heterotypic interaction which merges mid-sized, relatively
pure fascicles to form large impure fascicles.

V. SINGLE TYPE OF AXONS, NO DETACHMENT

In this section we analyze the collective behavior of axons
belonging to a single type following the energy-minimizing
“always attach, never detach” rule. This model has been
investigated in detail in a previous publication [11]. In this
section, we extend the numerical and analytical results of
Ref. [11]. In the simulations, we use a modified implementa-
tion of the Monte Carlo update rules. In contrast to Ref. [11],
the strength of interaction between a growth cone and a fascicle
is assumed to be proportional to the number of axons present
in the fascicle. Another difference is that we use parallel
updates instead of the sequential updates used in Ref. [11].
We, therefore, include a comparison to the main results we
reported in Ref. [11] to show that these are not altered.
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FIG. 3. (Color online) Approach to the steady state in the
L = 400, N0 = 200 system at representative y levels indicated in
the legend. The mean fascicle size 〈n̄(t ; y)〉 (averaged over 103

realizations) approaches n∞(y) as t → ∞. The data set labeled as
ρ = 1/8 is from the L = 400, N0 = 50 system, collected at y = 104.
(Inset) Fitting of n∞ − 〈n̄(t,y)〉 to a function f (t) = p exp(−βt) +
q exp(−t/τap) shown in a semilog plot. The data are the same as
shown in the main figure at y = 103. The fitting parameters are
n∞ = 42.94 ± 0.07, p = 13.98 ± 0.24, and q = 7.43 ± 0.05 and the
approach-to-steady-state time scale τap = (294 ± 6)T . We used the
Marquardt-Levenberg algorithm for nonlinear least-squares fitting as
implemented in GNUPLOT, version 4.4.

A. Approach to steady state: Mean fascicle size and time scale

A typical late-time configuration for a system with L = 800
and N0 = 100 (density ρ = N0/L = 1/8 at y = 0) is shown
in Fig. 2(c). With increasing y, the axons aggregate into
a decreasing number of fascicles. The number of axons in
a fascicle is referred to as the fascicle size n. At steady
state, the mean fascicle size n̄ at level y may be estimated
as n̄ � 2ρy1/2 exp(−βy) up to y � (L/2)2, where complete
fasciculation n̄ = N (y) is expected [11].

The measured mean fascicle size, obtained by averaging
over all the existing fascicles at a given y (Fig. 3), grows
with time as n̄ = n∞ − p exp(−βt) − q exp(−t/τap), where
τap(y) defines the time scale of approach to the steady-state
value n∞(y). The same behavior was observed earlier in
simulations reported in Ref. [11]. The semilog plot in the inset
of Fig. 3 shows clearly the slow exponential approach to the
steady-state mean fascicle size. Using the above-mentioned
double-exponential fitting we extract the time scale τap and the
steady-state mean fascicle size n∞ at all the y levels.

The approach-to-steady-state time scale τap increases with
y. τap can exceed the mean axon lifetime T by orders of
magnitude (Figs. 3 and 4). Note that τap is longer in a
system with larger density of axons ρ (Fig. 4). Reference [11]
discussed this point in detail. Further, asymptotically in y, we
find n∞ = c + 2ρyb exp(−βy), with b ≈ 1/2 (Fig. 5), in good
agreement with the mean-field prediction (Sec. IV).

1. Impact of interaction range

To test the impact of the range of inter-axon interaction,
we have simulated a similar system with purely “contact”

FIG. 4. (Color online) Approach-to-steady-state time scale τap

as a function of y at different axon densities. τap is extracted by a
fitting procedure as described for the inset of Fig. 3. The time series
are collected over t = 500 T and averaged over 103 realizations. All
the data were collected for a system of N0 = 50 axons, with varied
system sizes, (i) L = 100 (ρ = 1/2), (ii) L = 150 (ρ = 1/3), and
(iii) L = 200 (ρ = 1/4). Correlation time τc: The last data set shows
the steady-state correlation time τc (in units of T ) for a L = 100,
N0 = 50 system calculated from the correlation function c(t) =
〈n̄(t)n̄(0)〉. c(t) is evaluated by using the time series of n̄(t) collected
between t = 200T and 2 × 104T and averaged over 30 realizations. A
fitting of c(t) = p + q exp(−βt) + r exp(−t/τc) allows us to extract
τc at different y levels. Fitting errors in τap and τc are within 5% [see
the caption to Fig. 3 (inset) for the fitting procedure and estimate of
error in τap]. The thick solid line shows a power law y2b with b = 1/2.

FIG. 5. (Color online) Time-asymptotic fascicle size n∞ for sys-
tems with N0 = 50 axons and system sizes L = 100, 150, 200, 400
(corresponding to ρ = 1/2, 1/3, 1/4, 1/8, respectively) as a function
of y. The time series are collected over a time interval of 500 T

and averaged over 103 realizations. The subtracted mean fascicle
size ns = (n∞ − c) exp(βy)/2ρ corrected for the finite axon-lifetime
T = 1/β is plotted as a function of y. The offset fascicle size
c is treated as a fitting parameter, c = 8.17, 3.48, 1.56, 0.11 for
L = 100, 150, 200, 400, respectively. Fitting errors in ns are within
3%. Data collected at the various densities collapse onto a power law
yb with b = 1/2. The largest system shows the widest power-law
regime.
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FIG. 6. (Color online) Steady-state distribution of fascicle sizes
Ps(n,y) (averaged over 104 realizations and the time interval 10T �
t � 25T ) for the N0 = 100, L = 800 system at y levels indicated in
the legend. (Inset) A scaling with B = 1/〈n〉 and A = 〈n〉2.1 collapses
all data obtained for y = 1585, 1995, 3162, 5012, 6310, 7943, 104

onto a single curve φ(u) = Nu exp(−νu − λu2) with u = n/〈n〉 and
N = 274, ν = 0.78, λ = 0.45.

interaction, i.e., the interaction range is taken to be zero.
With this reduction in the range of interaction, we find that
the emerging time scales decrease. For instance, for a system
of L = 800 and N0 = 100 the approach-to-steady-state time
becomes τap � 10T . Thus an increase in the range of inter-
action increases the emerging time scales. The steady-state
distribution of fascicle sizes shows the same scaling behavior
as in the case of nearest-neighbor interaction discussed in the
following.

B. Steady state

The steady state is characterized by the stationary distribu-
tion of fascicle sizes Ps(n,y), defined as the number of fascicles
of size n at level y.

1. Scaling regime

For a system with L = 800 and N0 = 100, Ps(n,y) is shown
at a series of y levels in Fig. 6. Within the range y = 103–104

all data collapse onto a single curve after appropriate rescaling
(Fig. 6). This data collapse implies the scaling law [11]

Ps(n,y) = 〈n(y)〉−rφ(n/〈n(y)〉) (1)

with r = 2.1 and the scaling function φ(u) = Nu exp(−νu −
λu2). Note that the steady-state-averaged fascicle size 〈n(y)〉
is a quantity equivalent to the asymptotic n∞(y) discussed in
the previous subsection.

The scaling law in Eq. (1) can be justified starting
from the assumption of homogeneity of fascicle size dis-
tribution Ps(n,λy) = λ−pPs(λ−qn,y), with the exponents p

and q undetermined at this stage. Noting that the mean
number of axons N (y) = ∫

dn nPs(n,y) and the mean
number of fascicles B(y) = ∫

dnPs(n,y), the homogeneity
condition leads to the relations N (λy) = λ−p+2qN (y) and
B(λy) = λ−p+qB(y). Since, by definition, the mean fasci-
cle size 〈n(y)〉 = N (y)/B(y), 〈n(λy)〉 = λq〈n(y)〉. Invoking
the mean-field prediction 〈n(λy)〉 = λb〈n(y)〉 with b = 1/2

FIG. 7. (Color online) Fascicle size distribution at large y for
a system of L = 100 and N0 = 50. The data were averaged over
400T � t � 500T and 103 realizations. The single-peaked distribu-
tion characteristic of the scaling regime (y = 500) crosses over to a
distribution peaked near complete fasciculation n = N (y) = 48.77 at
y = 2500 [= (L/2)2] through a coexistence regime showing a double
maximum (at y = 1000).

(Secs. IV and V A), we find q = b. If N (y) were inde-
pendent of y, we would have had p = 2b. However, in
fact N (y) = N0 exp(−βy). In the region βy < 1, we can
write p = 2b + δ with δ ≈ βy/ ln y 	 2b. Note that the
relation Ps(n,λy) = λ−pPs(λ−bn,y) can be recast in the form
Ps(n,y) = 〈n〉−rφ(n/〈n〉), where r = p/b = 2 + δ/b � 2, in
agreement with Eq. (1). As δ is y dependent, the scaling of
Ps(n,y) is only approximate.

2. Crossover to complete fasciculation

The steady-state distribution changes its shape drastically
beyond the scaling regime. Near y = (L/2)2, on average, all
the axons are expected to collapse onto a single fascicle,
thereby generating a distribution sharply peaked at n = N (y).
To demonstrate this fact we take a system of small size and
high density ρ = 1/2 (L = 100 and N0 = 50). Within the
scaling regime (y � 500) the distribution function maintains
the scaling form u exp(−νu − λu2). However, at higher y

levels the distribution becomes bimodal with a new maximum
appearing, characteristic of the complete fasciculation. This
shows a coexistence of two preferred fascicle sizes. Finally, at
y � (L/2)2 the whole weight of the distribution shifts to this
new maximum and the distribution becomes unimodal again
(see Fig. 7). In systems with larger L, the regime of coexistence
shifts toward higher y levels.

3. Correlation time

The dynamics in the steady state is characterized by the
autocorrelation function for the mean fascicle size n̄(t) at a
fixed y level: c(t) = 〈n̄(t)n̄(0)〉 which fits to the form p +
q exp(−βt) + r exp(−t/τc) (as in Ref. [11]). The correlation
time τc increases with y and significantly exceeds the axon
lifetime T . We show this behavior for systems at ρ = 1/2 (L =
100, N0 = 50) in Fig. 4. This shows a regime of approximate
power-law growth of the time scale τc ∼ y2b with b ≈ 1/2.
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C. Effective single-fascicle dynamics at fixed y

In this subsection, we review our analytical results from
Ref. [11]. The following subsection presents new results for
the time scales arising from the interaction of two neighboring
fascicles.

The concept of effective single-fascicle dynamics was
introduced in Ref. [11]. The dynamics of a mean fascicle at
level y with n(t) axons can be viewed as a stochastic process
with gain rates u+(n) (for transitions n → n + 1) and loss rates
u−(n) (for transitions n → n − 1). A fascicle loses axons only
by the death of individuals, therefore, u−(n) = βn [11].

In the absence of detachment events, any axon introduced
within the basin (size D) of a fascicle [see Fig. 2(c)] cannot
escape the fascicle. Moreover, some of the axons born in
the neighboring interbasin gaps (size E) eventually join the
fascicle under consideration. These two processes contribute
to u+(n). As was shown in Ref. [11], the time series of D(t)
and n(t) tend to covary. Thus, treating the dynamics of D as
slave to n, we get a form u+ = a + bn [11]. Note that the basin
size D cannot exceed 2y or L, and D > 2y1/2 occurs with low
probability. Therefore, a saturation of u+(n) is expected for
large values of n. The measured average gain and loss rates
u±(n) obtained from our current simulations agree with the
functional forms u+(n) = a+ + b+n − c+n2 and u−(n) = βn

(data not shown). The quadratic correction to linear growth
captures the saturation of u+(n) at large n.

The master equation of the growth-decay process for the
effective single fascicle of size n at level y may be written as

Ṗ (n,t) = u+(n − 1)P (n − 1,t) + u−(n + 1)P (n + 1,t)

− [u+(n) + u−(n)]P (n,t), (2)

for n > 1. For the boundary state (n = 1)

Ṗ (1,t) = J+(y) + u−(2)P (2,t) − [u+(1) + u−(1)]P (1,t),

where J+(y) represents the rate with which new single axons
appear between existing fascicles at y.

The solution of the master equation at steady state was
derived in Ref. [11] and has the form

βPs(n,y) = J+(y)nγ exp[−�(n − 1) − κ(n − 1)2], (3)

where γ = a+/β − 1 and � = 1 − b+/β and κ = c+/2β.
From the master equation one can estimate the approach-

to-steady-state time τap and the correlation time at steady state
τc [11]. The correlation time τc for the fascicle size n, near the
macroscopic stationary point ns [u+(ns) = u−(ns)], can be
expressed [46] as τc = 1/[u′

−(ns) − u′
+(ns)] = 1/(β − b+ +

2c+ns). Under the linear approximation of u+(n) = a+ + b+n

the approach-to-steady-state time scale for the average fascicle
size 〈n〉 can be written as τap = 1/(β − b+) [46].

Further, the mean lifetime of fascicles can be defined as
τf = [

∫ ∞
1 Ps(n,y)dn]/J+(y) and is evaluated to obtain [11]

τf = (T/2κ)
[
1 − (√

πe
�2

4κ (� − 2κ)erfc(�/2
√

κ)
)
/2

√
κ

]
.

Note that the above derivations of the time scales already in-
volved the numerical observation u+(n) = a+ + b+n − c+n2.
Using the y dependence of b+ and c+ obtained from numerical
simulations, we found power-law growth of the time scales,
τc ∼ yb, τap ∼ yb and τf ∼ y2b with b ≈ 1/2 [11].

In the following subsection, using a purely analytical,
deterministic treatment of the dynamics of two neighboring
fascicles, we show that a time scale growing as y2b emerges
due to an exchange of basin size between the fascicles.

D. Effective dynamics of two interacting fascicles

In this section we analytically explore the effective dynam-
ics of two neighboring fascicles. Under the “always attach,
never detach” rule the basins of neighboring fascicles do not
overlap. Three dynamical variables characterize the dynamics
of the fascicles: (i) the number of axons ni present in the
fascicle, (ii) the basin size Di , and (iii) the separation Ei

between the i-th and (i + 1)-th basin [Fig. 2(c)]. We explore the
dynamics at a fixed y. We consider the thermodynamic limit of
large N0 and L (with a fixed density ρ = N0/L) and express all
the length scales in units of L and number of axons in units of
N0. Thus the reduced variables are ηi = ni/N0, λi = Di/L,
εi = Ei/L, and the reciprocal system size ã = 1/L has the
meaning of a lower cutoff size in the continuum description.
The effective equations of motion are

dηi

dt
= β

(
λi + εi−1 + εi

2

)
− βηi

dλi

dt
= α

4
[εi−1(εi−1 − ã) + εi(εi − ã)] − 2βδ

λi

ηi − δ

dεi

dt
= βδ

(
λi

ηi − δ
+ λi+1

ηi+1 − δ

)
− α

2
εi(εi − ã), (4)

where δ = 1/N0. First, we describe the gain and loss terms
in the dynamics of ηi . Axons born inside the basin of a
fascicle contribute to the increase in ηi , hence the term βλi

(we used N0 = α/β to express axon birth rate α in terms
of β). A fascicle can lose axons only by individual axon
deaths, thus the loss term βηi . Any axon that is born in the
inter-fascicle empty spaces εi−1 and εi ends up in either of the
two neighboring fascicles with probability 1/2, hence the gain
term (1/2)β(εi−1 + εi).2

We next consider the dynamics of basin size λi . A new axon
can be born in the gap εi with a rate α(εi − ã) and attach to the
i-th fascicle with probability 1/2. If it attaches it contributes
half the gap size εi/2 toward the basin size λi . Hence the gain
term (α/4)εi(εi − ã). A similar contribution to the gain in the
basin size comes from the other neighboring gap εi−1. The
death of a boundary axon reduces the basin size by an amount
δλi/(ηi − δ) (assuming no double occupancy at a lattice point
in the y = 0 level). The contributions of this loss coming from
two boundaries add up in the total loss term 2 × βδλi/(ηi − δ).

Finally, we consider the dynamics of the interbasin gaps εi .
The death of boundary axons of neighboring fascicles i and
i+1 that border the i-th gap εi contributes to the gain in the gap
size. Thus the gain terms βδλi/(ηi − δ) and βδλi+1/(ηi+1 −
δ). Birth of an axon in the gap reduces the gap size under
consideration. The rate of such an axon birth is α(εi − ã) and

2Note that the fact that an axon born in a gap may end up as a single
axon has been ignored as the corresponding rate becomes negligible
at high y.
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on average this event reduces the gap size by an amount εi/2;
thus the loss term (α/2)εi(εi − ã).

We use a periodic boundary condition such that the last
fascicle is a nearest neighbor of the first fascicle. These
equations obey the constraint of overall constant size

∑
i(λi +

εi) = 1. It is important to note that the cutoff ã can be taken to
zero meaningfully only after solving the differential equations.

For the simplest nontrivial case involving two fascicles, the
steady state that follows from these equations is characterized
by η1 = η2 = 1/2, λ1 = λ2 = 1/2 − ã/2 − 2δ − ãρ/16, and
ε1 = ε2 = ã/2 + 2δ + ãρ/16. We perform a normal mode
analysis for small deviations from this steady state. The
constraint

∑
i=1,2(λi + εi) = 1 implies that there are only five

independent deviations, δλ1, δε1, δε2, δη1, and δη2. The linear
stability analysis about the steady state shows that all the five
possible modes are stable. Among them, four modes are short
lived. For them the deviations decay extremely fast with rates
∼β. However, the fifth mode that in the large-size limit can be
written as

(δn1 = −1, δD1 ≈ −1/ρ, δE1 = 0, δn2 = 1, δD2 ≈ 1/ρ)

takes a long time to decay (see Fig. 8). It involves the loss of
a boundary axon of one fascicle, which shrinks its basin size
by δD1 ≈ −1/ρ, and, simultaneously, a gain of a boundary
axon for the other fascicle, increasing its basin size by the
equal and opposite amount δD2 ≈ 1/ρ. This operation leaves
the interbasin gap unchanged (δE1 = 0) and can be viewed
as an exchange of basin space (Fig. 8). The deviations from
steady state in this mode decay over a very long time scale
τ ≈ n̄2/3β, where n̄ is the steady-state value of the fascicle
size (n1 = n2 ≡ n̄).

Using the approximate growth of mean fascicle size n̄ ∼
yb with b = 1/2, we find a power-law growth of this time
scale τ ∼ y2b. Note that the measured time scales τap and τc

obtained from MC simulations show an increase with y which
approximately obeys the power law y2b with b = 1/2 (see
Fig. 4). At lower densities, the simulated data agrees better
with the y2b power law. In the analytic calculation above, we
assumed single occupancy of the boundary sites of a fascicle
basin (removal of a boundary axon was assumed to reduce the
basin size). At higher densities this assumption dose not hold,
the boundary of a basin becomes multiply occupied by axons,
and thus we see a departure from the y2b power law.

VI. SINGLE TYPE OF AXONS, WITH DETACHMENT

In the previous section, we concentrated on the “zero-
temperature,” energy-minimizing dynamics, in which axons
cannot detach from a fascicle once they become part of it.
Now we extend our analysis to “finite-temperature” Monte
Carlo dynamics, in which the detachment of growth cones
from fascicles become possible. It is important to analyze
this general case as in the experimental studies of fascicula-
tion dynamics [20,28,29], defasciculation events are clearly
observed. An additional reason is that the detachment from
fascicles is crucial for the formation of pure fascicles in a
system containing multiple axon types; see Sec. VIII.

As described in Sec. III, in our Monte Carlo simulations
(with effective temperature set to unity), a randomly attempted
move to left (right) is accepted with probability pL =

FIG. 8. (Color online) Illustration of basin size exchange, i.e.,
the slowest mode in the effective dynamics of two fascicles
(Sec. V D). Two neighboring fascicles i and i + 1 are shown along
with their corresponding basins Di and Di+1 and interbasin gaps Ei

and Ei+1. The exchange of the boundary axon (dashed green line)
between the two fascicles corresponds to a relaxation mode with time
scale τ ∼ y2b (see the main text). This increases the basin size Di+1

at the cost of Di , leaving the gap size Ei unaltered.

min[1, exp(−δEl)] (pR = min[1, exp(−δEr )]), where δEl and
δEr are evaluated based on the axon occupancy numbers and
on the additive interaction energy per axon Eh (< 0). The
detachment rate of a growth cone following a fascicle of size
n is exp(nEh). Note that for weaker Eh, the detachment rate is
larger.

A. Impact of detachment on n∞ and τap

The approach-to-steady-state time scale τap decays with
increasing detachment rates (decreasing inter-axon attraction
|Eh|). We perform the approach to steady-state data analysis in
the same manner as we did for the purely energy-minimizing
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dynamics discussed in the previous section. This analysis
gives an estimate of the time-asymptotic mean fascicle size
n∞ as well as the approach-to-steady-state time scale τap

as a function of y. We perform this analysis for a system
of N0 = 100 and L = 200 at various strengths of inter-axon
interaction Eh. Strictly speaking, the presence of detachment
invalidates our earlier mean-field argument for the growth of
fascicle size with y. While the concept of the basin of a fascicle
is still meaningful, the basin can “leak,” i.e., newly growing
axons can escape from it through the detachment process.
Despite this, for most interaction strengths our numerical
results obey n∞ = c + 2ρeffy

1/2 exp(−βy) with the fitting
parameter ρeff taking the place of ρ [Fig. 9(a)]. The value of ρeff

is the smallest for the weakest attractive interaction plotted in
Fig. 9(a). For extremely weak attraction (e.g., Eh = −0.1),
almost no fasciculation can occur (ρeff � 0) and therefore n∞
remains independent of y (data not shown).

As shown in Fig. 9(b), the time scale τap for the approach
to steady state decays with reduced inter-axon attraction (i.e.,
with increased detachment rate). When Eh � −2, the growth
of τap with y is similar to the one we observed for the “zero-
temperature” dynamics. At Eh = −1, however, we find that
τap becomes comparable to the mean axonal lifetime T , even
though at this value of Eh the power-law growth of the mean
fascicle size with y is still maintained.

The reduction of τap with increased detachment rate may
be understood as a result of enhanced interaction between
neighboring fascicles. As we noted before, the slowest time
scale for the case of purely energy-minimizing dynamics is
due to the very slow process of exchange of basin size between
neighboring fascicles. In presence of finite detachment rates,
axons from one fascicle can detach and connect to a neigh-
boring fascicle, thereby opening up a new and faster mode of
interaction between neighboring fascicles.

B. Impact of detachment on the fascicle size distribution

In this subsection we show that even in presence of an
appreciable detachment rate (Eh � −1), the scaling of fascicle
size distribution persists and the scaling function retains its
overall functional form. However, with increasing detachment
rates (decreasing |Eh|), the small n portion of the fascicle size
distribution gains at the cost of bigger fascicles and deviates
from the scaling form.

Figure 10 shows the steady-state fascicle size distributions
for a system of L = 800 and N0 = 100. As the attraction is
decreased from Eh = −4 to Eh = −1, we observe an overall
increase in the small n portion of the distribution. Except for
the lowest values of n, we obtain data collapse implying the
scaling form

Ps(n,y) = 〈n〉−rφ(n/〈n〉),
where r = 2.1 for Eh = −4, − 2, and r = 2 for Eh = −1.
Similarly to the case of strictly energy-minimizing dynamics,
this scaling is observed only in the intermediate range of y

values, 103 < y < 104, and the scaling function is of the form
φ(u) = Nu exp(−νu − λu2) with u = n/〈n〉.

The small-n part of the distribution does not scale. Ps(n,y)
is large at n = 1 and drops to lower values with increasing n,
before it increases again to follow the scaling function. The

FIG. 9. (Color online) The time-asymptotic fascicle size and
approach-to-steady-state time scale as a function of y for a system
with density ρ = 1/2 (N0 = 100 and L = 200) at different inter-axon
attractions Eh. The time series were collected over a time interval
of 500T and averaged over 103 realizations. (a) The subtracted
time-asymptotic fascicle size ns = (n∞ − c) exp(βy)/2ρeff follows
a power law y1/2. The effective density ρeff and offset c are
treated as fitting parameters with c = 5.44 ± 0.62, ρeff = 0.52 ± 0.02
for Eh = −4, c = 3.44 ± 0.26, ρeff = 0.53 ± 0.01 for Eh = −2,
and c = 2.26 ± 0.04, ρeff = 0.41 ± 0.002 for Eh = −1. (b) The
approach-to-steady-state time scale τap gets smaller for weaker
attractions Eh, however, shows the initial power-law growth unless
Eh � −1. The dotted line shows a power law y2b with b = 1/2.
Fitting errors in τap are within 5%.

functional form of the initial decay of Ps(n,y) with n depends
on y and also Eh, as we show in detail in Fig. 10(d).

The discussion in this section shows that there are parameter
regimes, e.g., the Eh = −1 case discussed above, where the
emergent time scales are comparable to the mean lifetime T of
single axons and, at the same time, the steady-state statistics
(the mean fascicle size and the fascicle size distribution) obey
the overall features demonstrated by the energy-minimizing
dynamics. This parameter regime might be utilized to attain a
fasciculation pattern of this type in a relatively short time.
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FIG. 10. (Color online) Steady-state distribution of fascicle sizes Ps(n,y) (averaged over 104 realizations and the time interval 10T � t �
25T ) for the N0 = 100, L = 800 system at different strengths of inter-axon interactions (a) Eh = −4, (b) Eh = −2, and (c) Eh = −1. The
insets show the data collapse. A scaling with B = 1/〈n〉 and A = 〈n〉r collapses data obtained for y = 1585, 1995, 3162, 5012, 6310, 7943, 104

onto a single curve φ(u) = Nu exp(−νu − λu2) with u = n/〈n〉 and (a) N = 262.6, ν = 0.37, λ = 0.74, r = 2.1 (b) N = 318, ν = 0.67,
λ = 0.64, r = 2.1 and (c) N = 244.5, ν = 0.18, λ = 1.05, r = 2. The fitting to obtain the scaling functions is done above u = 0.4. (d) The
same distributions as in (c) presented in a log-log plot. Ps(n,y) decreases with n in the small n regime. The thick line (red) denotes a power
law n−5/2. The arrow denotes the direction of increasing y (y = 1, . . . ,104). Note that the curve obtained at y = 104 is the closest to the n−5/2

line at small n. For y > 500, the initial decrease of Ps(n,y) with n is followed by a subsequent increase that merges with the scaling function.
At y � 20, the tail of the distribution is exponential (noninteracting limit). [Inset of (d)] The solid (red) lines are the fascicle size distributions
for Eh = −0.1 at all y levels (10 < y � 104). It shows a clear single exponential decay characterizing the (almost) noninteracting axons. This
should be compared with the dotted (blue) lines that show approximate exponential decay of the distributions in the range y � 20 for Eh = −1.

VII. RELATION TO PARTICLE AGGREGATION AND
COALESCENCE IN ONE DIMENSION

As we pointed out in Sec. IV, in a steady-state configuration
at fixed time t , the axon fasciculation with increasing y may
be formally viewed as the evolution of a one-dimensional
(1D) reaction-diffusion process, where the y coordinate takes
the meaning of time. As we show in this section, this limited
analogy can be used to approximately understand some
steady-state properties, e.g., the distributions of fascicle sizes
and of inter-fascicle spatial separations. We stress, however,
that the full dynamics of our system cannot be mapped on to
a 1D reaction-diffusion system. The process of axon turnover,
which is crucial for the dynamical properties of our system,

does not have any analog in the 1D models we discuss in this
section.

A. In absence of detachment

In this subsection we discuss the relation of our basic model,
in which axons cannot detach from fascicles, to irreversible
aggregation and coalescence processes.

Interpreting the fasciculation of axons with increasing y (in
a steady-state configuration) as 1D irreversible aggregation of
particles (mA + nA → (m + n)A) [16,45], we find a predic-
tion u exp(−λu2) (see Eq. 8.4.24 in Ref. [16]) for the fascicle-
size distribution, which is similar to the true distribution
u exp(−νu − λu2) (Sec. V B) [11]. Note that the distribution
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obtained from the mapping to irreversible aggregation lacks
the exponential part exp(−νu). As we explained in Ref. [11],
having ν = 0 in our model would require τap = ∞. The
absence of the exponential part is, therefore, consistent with
the absence of turnover-based dynamics in the 1D analogy.

The merging of fascicles with growing y may alternatively
be interpreted as an irreversible coalescence process A + A →
A [15], viewing each fascicle as a particle A. The pattern
formation in 1D irreversible coalescence had been quantified
by the interparticle distribution function (IPDF) [15], the
distribution of distance between neighboring particles. The
steady state of this process is trivial, with infinite particle
separation. The IPDF is obtained at finite time t , before this
steady state arrives, and has the form (x/4Dt) exp(−x2/8Dt),
where D denotes the particle diffusion constant [15]. The
change in the inter-fascicle separation distribution with in-
creasing y in our model may be viewed as equivalent to
the time evolution of IPDF in irreversible coalescence. This
leads us to a prediction of the distribution of inter-fascicle
separation H (�x,y) ≈ (�x/y) exp(−μ�x2/y). Using the
same stochastic simulation that we used to obtain Fig. 6, we
calculated the histogram of spatial separations �x between
fascicles identified at various y levels. Note that the separation
between two neighboring fascicles �x is measured at the
same y level at which the fascicles are identified and differs
from the gap between fascicle basins E (shown in Fig. 2).
A rescaling of H (�x) by a factor A(y) and �x by B(y)
leads to a data collapse [Fig. 11(a)] and approximate power-
law dependences A ∼ yp and B ∼ y−q with p = 0.96 and
q = 0.47 [Fig. 11(b)]. This result is in reasonable agreement
with the above-mentioned form of H (�x,y) that predicts a
scaling function P�x exp(−Q�x2) [Fig. 11(a)], and scaling
exponents p = 1 and q = 1/2.

B. In presence of detachment

In this subsection we discuss analogies of our model of
axon fasciculation in the presence of detachment to reversible
aggregation and coalescence processes in 1D. Due to specific
features of our model, only qualitative analogies to models
from the 1D literature can be made.

Detachment events are partially captured when the axon
fasciculation with increasing y in a fixed-time configura-
tion is formally viewed as a 1D diffusion with reversible
aggregation, the chipping model, mA + nA → (m + n)A
and mA → (m − 1)A + A [17], denoting each axon by a
particle A. (Note, however, that steady-state configurations
of our model show splitting of fascicles with increasing y

[e.g., see Fig. 2(b)] into two fascicles containing multiple
axons. The chipping model does not include the analog of
such a process.) The chipping model posseses a nontrivial
steady state (t → ∞, corresponding to y → ∞ within our
model). It shows a dynamic phase transition associated with
particle density ρ [17,18]. The steady-state distribution of
clusters of size n is predicted to be Ps(n) ∼ exp(−n/n∗) at
ρ < ρc = √

1 + w − 1, where w denotes a constant single
particle chipping rate. At the critical density ρ = ρc, the
distribution changes its shape to Ps(n) ∼ n−5/2. At density
above ρc this power-law distribution remains unaltered, and, in
addition to the power-law distributed clusters, one gets a single

FIG. 11. (Color online) Histogram of inter-fascicle separation
�x. (a) Rescaling of the histogram H (�x), obtained at various
y levels indicated in the legend, leads to data collapse. The line
through the collapsed data is the function P�x exp(−Q�x2) with
P = 0.0085 and Q = 0.0002. (b) The scale factors A, B obtained
at different y levels show power-law dependence A ∼ y0.96 and
B ∼ y−0.47 indicated by the lines through the data points.

cluster of diverging size [17]. Figure 10 shows fascicle size
distributions obtained from our model at various interaction
strengths Eh. Note that, in contrast to the chipping model,
in our model the rate w = 1/[1 + exp(−nEh)], with which a
single axon detaches from a fascicle, depends on the fascicle
size n. Only for the weakest interaction Eh = −0.1 [inset of
Fig. 10(d)], the detachment rate from a two-axon fascicle w

= 0.45 corresponds to a critical density ρc = 0.2 which is
greater than the axon density ρ = 1/8. The correspond-
ing fascicle size distribution shows a form consistent with
∼exp(−n/n∗) [inset of Fig. 10(d)]. For Eh = −1 the detach-
ment rate from a two-axon fascicle w = 0.12 corresponds to
a critical density ρc = 0.06 < ρ (= 1/8). The fascicle size
distribution in the region of small n, for Eh = −1, shows
rough agreement with the power law ∼n−5/2 [Fig. 10(d)].
This change in shape of the fascicle size distribution from
an exponential decay to a power-law decay at small n, thus,
is consistent with the dynamical phase transition predicted
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by the chipping model. Since in our model the detachment
rate of axons exponentially decays with fascicle size n, for
larger fascicles the detachment rate w becomes so small
that the analogy with the reversible chipping model breaks
down, and the behavior of the system becomes analogous to
irreversible aggregation. The fascicle size distribution in the
region of larger n (Fig. 10) becomes indistinguishable from
axon fasciculation in absence of detachment.

We note that, for our model in presence of detachment, the
change in the distribution of inter-fascicle spatial separation
with increasing y cannot be easily understood in terms of
reversible coalescenceA + A ⇀↽ A [15,47] (denoting each
fascicle as a particle A). The main reasons are as follows:
(i) The reverse reaction A → A + A allows for splitting of a
single axon into two, a mechanism not allowed in our model,
and (ii) in contrast to reversible coalescence, the probability
of splitting of a fascicle in our model decays rapidly with
increasing fascicle size. Thus the y-independent distribution of
inter-fascicle separation cs exp(−cs�x), expected from IPDF
of reversible coalescence [15], is never reached. At large y, we
find a distribution of inter-fascicle separation that conforms
more to P�x exp(−Q�x2) (data not shown), consistent with
irreversible coalescence (see the previous subsection).

We note again that time-dependent quantities in our model
have no analog in the mapping to the 1D models we discussed
above. The emergence of density-dependent long time scales in
reversible coalescence [15,47,48] therefore has no relation to
the long time scales in our model, which are due to a very slow
reorganization of fascicle basins (Sec. V D), a consequence of
axon turnover.

VIII. MIXED POPULATION OF MULTIPLE AXON TYPES

The axons of olfactory sensory neurons expressing distinct
odorant receptors [35] are believed to have short-range
interactions with interaction strengths that are correlated with
the type of receptors the neurons express [39,41,49,50]. In the
framework of our model, this corresponds to the introduction
of multiple types of random walkers, with type-dependent
probabilities for attachment to and detachment from fascicles.
Neuronal systems containing multiple types of axons are
known to achieve pure and stable connections. In the olfactory
system, it may be expected3 that when the growth cone
is located in a relatively pure environment (i.e., when it
is in contact with axons mainly of its own type), it leads
to reduced axonal turnover. While we do not include such
effects in our model, in this section we evaluate the mean
purity of axon environment S to characterize the sorting
dynamics.

A. Mean purity

Let us consider a system containing two types of axons
named r and b. Assume that a fascicle contains nr of r axons
and nb of b axons. If the i-th axon in the fascicle is of type r ,
the purity of environment that this axon encounters within the
fascicle is si = (nr − nb)/(nr + nb), while if the axon is of type

3Paul Feinstein (private communication).

b, the purity of environment is si = (nb − nr )/(nr + nb). Then
the mean purity of environment obtained by averaging over all
N (y) axons is S = (

∑N(y)
i=1 si)/N (y). The partial sum within

a fascicle gives nr (nr − nb)/(nr + nb) + nb(nb − nr )/(nr +
nb) = (nr − nb)2/(nr + nb). Thus, the degree of sorting can
be quantified as the mean purity of axon environment

S = 1

N (y)

∑
fascicles

(nr − nb)2

(nr + nb)
. (5)

Note that 0 � S � 1; S = 1 corresponds to completely pure
fascicles containing only one type of axons, whereas S = 0
describes fascicles containing an equal mixture of the two
axon types.

B. Approach to steady state

We consider a system of size L = 800 having Nr
0 = 50

axons of type r and Nb
0 = 50 axons of type b at the y = 0 level

[ρ = (Nr
0 + Nb

0 )/L = 1/8]. We use the homotypic interaction
energy (interaction between r-r or b-b) Eh = −4 and the
heterotypic interaction energy (between the two different types
r-b) Eo = −0.1. We monitor the time evolution of the mean
purity of environment S and the mean fascicle size n̄. A
typical configuration is shown in Fig. 2(b). The mean fascicle
size reaches the steady-state value at each y level with two
characteristic time scales, similarly to the case of a system
containing only one type of axons (Fig. 3). The shorter time
scale is intrinsic, the mean lifetime of a single axon T , and
the other one is the emergent approach-to-steady-state time
scale τn (equivalent to τap defined in the caption of Fig. 3).
As in the case of a system containing only one type of axons,
this time scale τn can be orders of magnitude larger than T

[Fig. 12(d)].
The intrinsic time scale T does not appear in the dynamics

of S, however. S approaches its steady-state value S∞ with a
single time scale τs . The measured mean purity S fits to the
form S = S∞ + r exp(−t/τs) [Fig. 12(a)]. The steady-state
mean purity S∞ initially grows with y, reaching a maximum
beyond which S∞ decreases [Fig. 12(b)]. This nonmonotonic
behavior is seen both for low- (ρ = 1/8) and high- (ρ = 1/2)
density systems [Fig. 12(b)]. Thus for the combination of
strong homotypic and weak heterotypic attractive interaction,
the fascicles achieve the highest purity at a particular distance
from their starting point, beyond which the typical fascicle
keeps on losing purity. From energetic considerations, one
may understand this behavior as follows. The high strength
of the homotypic attraction compared to the heterotypic one
leads to sorting and thus the initial growth in purity at lower
y levels. Once one obtains highly pure and sufficiently large
fascicles, however, the heterotypic interaction will merge the
r-dominated and b-dominated fascicles to form larger mixed
fascicles and thereby lead to a loss in mean purity. The effect
of the weak heterotypic interaction becomes significant only
at higher y levels, where large fascicles are formed (recall that
in our model, the interactions are additive).

Similarly to the case of a system containing only
a single axon type in presence of detachment, we
find that the steady-state mean fascicle size grows as
n∞ = c + 2ρeffy

1/2 exp(−βy). Figure 12(c) shows that the
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FIG. 12. (Color online) This plot shows the approach to steady state for mean fascicle size and mean purity of fascicles in a system
containing Nr

0 = 50 r axons and Nb
0 = 50 b axons that interact through homotypic interaction strength Eh = −4 and heterotypic interaction

strength Eo = −0.1. Two mean axon densities ρ = 1/8 (system size L = 800) and ρ = 1/2 (L = 200) are used. (a) Approach-to-steady-state
data for mean purity S as a function of time t/T in a system with density ρ = 1/8. All the data were collected over 500T and averaged over
103 realizations. The data at each y-level fits to the form S(t) = S∞ + r exp(−t/τs), where S∞ is the asymptotic mean purity and τs is the
time scale of approach to steady state. The fitting is shown for the data set at y = 104, where S∞ = 0.73, r = 0.19, and τs = 63.64 with all
the fitting errors being less than 2%. (b) Asymptotic mean purity S∞ as a function of y at ρ = 1/8 and ρ = 1/2. Fitting errors in S∞ are
within 3%. (c) Asymptotic subtracted mean fascicle size ns = (n∞ − c) exp(βy)/2ρeff as a function of y. This follows yb with b = 1/2. ρeff is
treated as a fitting parameter. For ρ = 1/2, c = 1.88 ± 0.2 and ρeff = 0.392 ± 0.005. For ρ = 1/8, c = 1.13 ± 0.05 and ρeff = 0.059 ± 0.001.
(d) Approach-to-steady-state time scales, τs for mean purity S and τn for mean fascicle size n̄ as a function of y for systems with ρ = 1/8 and
ρ = 1/2. Fitting errors in τs and τn are within 3%. The time scales show an approximate power-law growth y2b with b = 1/2 denoted by the
solid black line. Data are shown up to a y level where the time scales extracted from the fitting procedures remain less than half the total run
time t = 500T .

subtracted mean fascicle size ns = (n∞ − c) exp(βy)/2ρeff

follows the power law yb with b = 1/2. The effective
density ρeff and offset fascicle size c are treated as fitting
parameters.

The time scales for approach to steady state τn and τs

grow with y following an approximate power law y2b with
b = 1/2 [Fig. 12(d)]. This behavior is seen to be independent
of density ρ, in contrast to the single-type case, where we
found reliable y2b growth of the emergent time scales only
at lower densities. Recall that reduced inter-axon interaction
strengths lead to lower effective densities ρeff [Fig. 9(a)]. In
the present case of mixed population of axons of two types,

the heterotypic interaction is very weak and may have led
to the effectively low-density (y2b) power-law growth. We
note that τn and τs turn out to be approximately equal to each
other at all y levels.

C. Distribution of fascicle composition

In this section we briefly discuss the distribution of fascicle
composition P (nr,nb), measured as the number of fascicles
with nrr axons and nb b axons at a specified y level and time t .
In Fig. 13 we show this distribution obtained by collecting data
within the time interval 10T � t � 15T at various y levels for
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FIG. 13. (Color online) The distributions of fascicle composition P (nr,nb) calculated by averaging over 104 realizations and time interval
10T � t � 15T in a system with homotypic interaction Eh = −4, heterotypic interaction Eo = −0.1, number of axons Nr

0 = Nb
0 = 50, and

system size L = 200. The plots show the distributions calculated at y = 10, 102, 103, 104.

a system of Nr
0 = Nb

0 = 50 and L = 200 (ρ = 1/2). From
the approach-to-steady-state data (Fig. 12) it is clear that at
t = 10T , steady state is reached only up to y ≈ 100. Thus
the distributions obtained at y = 103, 104 in Fig. 13 are far
from steady state.4 All the plots in Fig. 13 show a pronounced
maximum for evenly mixed fascicles, meaning that most of
the fascicles we obtain are mixed by type. However, a careful
look at the plots reveals off-peak features of the distribution
with considerable weight that reflect the presence of fascicles
with highly asymmetrical composition (e.g., along the nb = 1
line for the plot at y = 100 in Fig. 13, the maximum of the
distribution is at nr = 5).

Finally, we comment on repulsive versus attractive het-
erotypic interactions. The attractive heterotypic interaction
generates larger fascicles asymptotically but induces a reduc-
tion of purity at large y. A repulsive heterotypic interaction
(combined with attractive homotypic interaction) would gen-
erate enhanced sorting; however, it would be at the cost of a
decreased mean fascicle size at all y levels.

IX. SUMMARY

In this paper, we provided a simple model of the dynamics
of axon fasciculation and sorting. To allow us to concentrate

4To obtain sufficiently good statistics for P (nr,nb), it was necessary
to average over a large number of configurations. Consequently, we
were restricted to a lower range of t as compared to the data for mean
fascicle size n and purity S shown in Fig. 12.

on the collective effects that arise from axon-axon interactions
in a large population of axons, we chose a particularly simple
implementation of single axon growth. In our model, each
growing axon is represented as a directed random walk
(Sec. III A). The common preferred growth direction may
arise, e.g., from the influence of a spatially distributed guidance
cue emitted by a distant target. Other than this common
influence, we do not include in our model the guidance of
axon growth cones by graded guidance cues and restrict our
attention to axon-axon interactions. The interaction of a growth
cone with other axons is modeled as a short-range attractive
interaction between a random walker and the trails of other
random walkers (Sec. III A). In addition, we incorporated
neuronal turnover (characteristic of, e.g., the mammalian
olfactory system) by assigning a finite lifetime to each growing
axon (Sec. III B).

The strength of the axon-axon interaction was parametrized
as an effective energy in a Monte Carlo update. In the
energy-minimizing dynamics (corresponding to zero effective
temperature in the Monte Carlo scheme), once a growth cone
attaches to an axon fascicle, it will never detach (become a
free random walker) again. For such dynamics, we extended
our previous numerical and analytical results of Ref. [11]
(Sec. V). In the general dynamics (corresponding to unit
effective temperature), axons may detach from fascicles, with
a rate that increases with decreasing axon-axon interaction
strength. We systematically studied how such detachment
events modify the basic dynamics with no detachments
(Sec. VI). Finally, we investigated a system with two types
of axons and analyzed the sorting dynamics arising from a
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strong homotypic interaction (between axons of same type)
combined with a weak heterotypic interaction (between axons
of different types) (Sec. VIII). Our main findings were as
follows.

The tendency to fasciculate is reflected in the growth of
the mean fascicle size n̄ with the distance y in the preferred
growth direction of the axons. Using a mean-field argument
we showed that for the energy-minimizing dynamics the mean
fascicle size n̄ should grow as n̄ � 2y1/2 ρ exp(−βy). This
agrees with the numerical results of Sec. V. In Secs. VI
and VIII, we showed that this growth law persists even in
the presence of detachment, with the average axon density ρ

replaced by a fitting parameter ρeff .
A more detailed characterization of the steady state is

a position-dependent fascicle size distribution. Within the
scaling regime L 	 y 	 (L/2)2, this distribution obeys a
scaling law Ps(n,y) = 〈n(y)〉−rφ(n/〈n(y)〉) with r = 2.1 and
the scaling function φ(u) = Nu exp(−νu − λu2) (Sec. V).
At higher y levels the distribution becomes bimodal, a
new maximum arises that is characteristic of the complete
fasciculation. Even in the presence of detachment, the scaling
behavior of fascicle size distribution remains valid over a wide
range of interaction strengths (Sec. VI and VIII).

The dynamics of reorganization of fascicles at high y levels
was found to be extremely slow. The emergent time scales, e.g.,
the approach-to-steady-state time τap or the auto-correlation
time at steady state τc, can be orders of magnitude larger
than the mean lifetime of an axon T . In Sec. V D, using
an analytical model of effective dynamics involving two
neighboring fascicles, we showed that the slowest mode of
this dynamics corresponds to the exchange of basin space
between the two fascicles and grows with distance as τ ∼ y.
This behavior of time scales survives even in the presence of
detachment (shown in Sec. VI A).

While our model is two dimensional, some limited analo-
gies can be made to 1D models of aggregation, coalescence,
and chipping (Sec. VII). We introduced a mapping in which
the progressive fasciculation with increasing y (at a fixed time)
in our model is mapped on to the time evolution within a
1D system of interacting particles. Using results from the
literature on 1D models, we then obtained predictions for
stationary quantities in our model. Thus interpreting each
axon as a particle A in the irreversible aggregation model
mA + nA → (m + n)A [16,45], we obtained the prediction
u exp(−λu2) for the distribution of fascicle sizes, which is
similar to the true steady-state distribution u exp(−νu − λu2)
in our model with energy-minimizing dynamics. Likewise,
interpreting each fascicle of axons as a particle A in the
irreversible coalescence model A + A → A [15], we obtained
the prediction (�x/y) exp(−μ�x2/y) for the distribution of
separations between fascicles, which agrees approximately
with numerical results from our model (Sec. VII). A lim-
ited analogy can also be made between the 1D chipping
(Refs. [17,18]) or reversible coalescence (Refs. [15,47])
models and our model in the presence of detachment. Since
in our model, the rate of detachment decreases with the
fascicle size, the reversible interaction models are relevant
only at low axon-axon interaction strengths. In this range
of parameters, we were able to relate the observed changes
of distribution of fascicle sizes in our model to the phase

transition that occurs in the chipping model of Ref. [17] (see
Sec. VII). We stress again, however, that the mapping to
these 1D models can say nothing about the time-dependent
quantities in our model (time in our model has no analog
in the 1D models). Therefore, for example, the slow time
scales discussed in the reversible coalescence model of Refs.
[15,47,48] are unrelated to the slow time scales present in our
model.

In Sec. VIII we analyzed a system with two types of axons
and type-specific interactions. In this system, axons sort into
fascicles according to axon type. We quantified the degree of
sorting by introducing the mean purity S of axon environment
within fascicles. For the case of strongly attractive homotypic
interaction and weakly attractive heterotypic interaction, we
showed that the degree of sorting S varies with distance y in a
nonmonotonic manner and has a single maximum.

X. OUTLOOK

In this paper we analyzed a model aiming to describe the
formation of axon fascicles and the sorting of fascicles by
neuronal types in the mammalian olfactory system. Our goal
was to systematically investigate the general nonequilibrium
statistical mechanics aspects of the model, leaving the task
of building quantitative connections with physiology for the
future.

To conclude, we discuss possible generalizations of the
basic model defined in this article and the applicability to
biological data on axon fasciculation. First, we note that in our
discussion of the dynamical properties of the system, it was
essential that the random walkers moved in two (rather than
three) spatial dimensions and therefore cannot cross each other
without interacting. In contrast, in a three-dimensional system,
the concept of fascicle basins would lose its validity. The
resulting fascicle dynamics in three dimensions is expected to
significantly differ from the two-dimensional dynamics, which
we showed to be governed by the competition of fascicles for
basin space. It will be necessary to examine to what extent the
assumption of two dimensionality is satisfied in the olfactory
system. However, this assumption is effectively satisfied in
studies of growth in neuronal cell culture [20,42,51], in which
the axons move on a plane surface and interact when crossing
each other. In Ref. [42], a fluorescence-based method is
proposed for extracting the distribution of fascicle sizes; such
experiments would permit a direct test of our model. Note
that in some of these studies, our assumption of very strong
adhesion of axons to the substrate is not satisfied. Events
not included in our model, such as the gradual straightening
of axon shafts or the local zippering and unzippering of
fasciculated axons (as observed in Ref. [51]) may therefore
occur. Note also that natural boundary conditions in such cell
cultures are either free boundary [42] or confining channels
[20,51], in contrast to the periodic boundary condition used
in our simulations. Recall that the mouse olfactory system
contains about 1000 axon types. In this paper, we considered
only up to two types of axons. It would be interesting to
examine if qualitatively new features emerge in systems with
many axon types and a range of heterotypic interactions. This
would require, however, significantly longer simulations.
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Recently, Ref. [13] examined the role of axon-axon inter-
actions in the fasciculation and sorting of axons belonging to
mouse olfactory sensory neurons. This showed that inter-axon
repulsive interactions arising from Neuropilin-Semaphorin
signaling play an important role in the axon sorting. In
the pretarget region (before reaching the olfactory bulb),
the amount of sorting grows with distance from olfactory
epithelium [13]. The pretarget axon sorting is shown to affect
the topographic map formation by the neurons in the olfactory
bulb [13,14]. Using a mutant mouse, Ref. [13] further showed
that heterotypic axons sort even in absence of the olfactory
bulb, i.e., in complete absence of axon-target interactions.
This kind of experiments forms a suitable ground for the
application of our model. Note that, in our model, we have
shown that a weaker heterotypic attraction combined with
a stronger homotypic attraction already leads to sorting. An
effective repulsion between the two types would enhance the

amount of sorting; however, it would be at the expense of the
size of the fascicles formed.

Our immediate future goal is to extract the parameter values
of our model from controlled in vitro experiments and then use
the model (and its possible extensions) to analyze in vivo data
on olfactory pattern formation in mice.
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