Lubomir Kostal

Computational Neuroscience Group Leader
Institute of Physiology CAS
Videnska 1083
142 20 Prague 4
Czech Republic

Phone: +420 2 4106 2276
Fax: +420 2 4106 2488


Research interests

Publications in journals

  1. Lee H, Kostal L, Kanzaki R, Kobayashi R (2023) Spike frequency adaptation facilitates the encoding of input gradient in insect olfactory projection neurons, Biosystems, 223, 104802, DOI link (full text).

  2. Tomar R, Kostal L (2021) Variability and Randomness of the Instantaneous Firing Rate, Frontiers in Computational Neuroscience, 15, 620410, DOI link (full text).

  3. Barta T, Kostal L (2021) Regular spiking in high conductance states: The essential role of inhibition, Physical Review E, 103, 022408, DOI link, preprint (arXiv).

  4. Rajdl K, Lansky P, Kostal L (2020) Fano factor: a potentially useful information, Frontiers in Computational Neuroscience, 14, 569049, DOI link (full text).

  5. Ascione G, D'Onofrio G, Kostal L, Pirozzi E (2020) An optimal Gauss-Markov approximation for a process with stochastic drift and applications, Stochastic Processes and their Applications, 130, 6481-6514, DOI link, preprint (arXiv).

  6. Barta T, Kostal L (2019) The effect of inhibition on rate code efficiency indicators, PLoS Computational Biology, 15, e1007545, DOI link (full text).

  7. Kostal L, Kobayashi R (2019) Critical size of neural population for reliable information transmission, Physical Review E Rapid Communications, 100, 050401(R), DOI link, preprint (PDF), supplementary material (PDF).

  8. Levakova M, Kostal L, Monsempes C, Lucas P, Kobayashi R (2019) Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in moth, Journal of The Royal Society Interface, 16, 20190246, DOI link (full text).

  9. Levakova M, Kostal L, Monsempes C, Jacob V, Lucas P (2018) Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations, PLoS Computational Biology, 14, e1006586, DOI link (full text).

  10. Kostal L, Lansky P, Stiber M (2018) Statistics of inverse interspike intervals: the instantaneous firing rate revisited, Chaos, 28, 106305, DOI link, preprint (PDF).

  11. Kostal L, D'Onofrio G (2018) Coordinate invariance as a fundamental constraint on the form of stimulus-specific information measures, Biological Cybernetics, 112, 13-23, DOI link, preprint (PDF).

  12. Rajdl K, Lansky P, Kostal L (2017) Entropy factor for randomness quantification in neuronal data, Neural Networks, 95, 57-65, DOI link (full text).

  13. Levakova M, Tamborrino M, Kostal L, Lansky P (2017) Accuracy of rate coding: When shorter time window and higher spontaneous activity help, Physical Review E, 95, 022310, DOI link, preprint.

  14. Levakova M, Tamborrino M, Kostal L, Lansky P (2016) Presynaptic spontaneous activity enhances the accuracy of latency coding, Neural Computation, 28, 2162-2180, DOI link, preprint.

  15. Kostal L (2016) Stimulus reference frame and neural coding precision, Journal of Mathematical Psychology, 71, 22-27, DOI link, preprint (PDF).

  16. Kostal L, Lansky P (2016) Coding accuracy on the psychophysical scale, Scientific Reports, 6, 23810, DOI link (full text).

  17. Kostal L, Shinomoto S (2016) Efficient information transfer by Poisson neurons, Mathematical Biosciences and Engineering, 13, 509-520, DOI link, preprint (PDF).

  18. Kostal L, Kobayashi R (2015) Optimal decoding and information transmission in Hodgkin-Huxley neurons under metabolic cost constraints, BioSystems, 136, 3-10, DOI link, preprint (PDF).

  19. Kostal L, Lansky P, Pilarski S (2015) Performance breakdown in optimal stimulus decoding, Journal of Neural Engineering, 12, 036012, DOI link, preprint (PDF).

  20. Kostal L, Lansky P (2015) Coding accuracy is not fully determined by the neuronal model, Neural Computation, 27, 1051-1057, DOI link, preprint (PDF).

  21. Koyama S, Kostal L (2014) The effect of interspike interval statistics on the information gain under the rate coding hypothesis, Mathematical Biosciences and Engineering, 11, 63-80, DOI link, full text (PDF).

  22. Kostal L, Lansky P (2013) Information capacity and its approximations under metabolic cost in a simple homogeneous population of neurons, BioSystems, 112, 265-275, DOI link, preprint (PDF).

  23. Kostal L, Lansky P, McDonnell MD (2013) Metabolic cost of neuronal information in an empirical stimulus-response model, Biological Cybernetics, 107, 355-365, DOI link, preprint (PDF).

  24. Kostal L, Lansky P, Pokora O (2013) Measures of statistical dispersion based on Shannon and Fisher information concepts, Information Sciences, 235, 214-223, DOI link, preprint (PDF).

  25. Kostal L, Pokora O (2012) Nonparametric estimation of information-based measures of statistical dispersion, Entropy, 14, 1221-1233, DOI link (full text).

  26. Kostal L (2012) Approximate information capacity of the perfect integrate-and-fire neuron using the temporal code, Brain Research, 1434, 136-141, DOI link, preprint (PDF), supplementary material (PDF).

  27. Kostal L, Lansky P, Pokora O (2011) Variability measures of positive random variables, PLoS ONE, 6, e21998, DOI link (full text).

  28. Kostal L (2010) Information capacity in the weak-signal approximation, Physical Review E, 82, 026115, DOI link, preprint (arXiv).

  29. Kostal L, Marsalek P (2010) Neuronal jitter: can we measure the spike timing dispersion differently? Chinese Journal of Physiology, 53, 454-464, full text (PDF).

  30. Kostal L, Lansky P (2010) Information transfer for small-amplitude signals, Physical Review E Rapid Communications, 81, 050901(R), DOI link, preprint (arXiv).

  31. Kostal L, Lansky P (2008) Randomness of spontaneous activity and information transfer in neurons, Physiological Research, 57, 133-138.

  32. Kostal L, Lansky P, Rospars J-P (2008) Efficient olfactory coding in the pheromone receptor neuron of a moth, PLoS Computational Biology, 4, e1000053, DOI link (full text).

  33. Kostal L, Lansky P, Rospars J-P (2007) Review: Neuronal coding and spiking randomness, European Journal of Neuroscience, 26, 2693-2701, DOI link, preprint (PDF).

  34. Kostal L, Lansky P, Zucca C (2007) Randomness and variability of the neuronal activity described by the Ornstein-Uhlenbeck model, Network: Computation in Neural Systems, 18, 63-75, DOI link, preprint (PDF).

  35. Kostal L, Lansky P, Rospars J-P (2007) Encoding of pheromone intensity by dynamic activation of pheromone receptors, Neurocomputing, 70, 1759-1763, DOI link.

  36. Kostal L, Lansky P (2007) Variability and randomness in stationary neuronal activity, BioSystems, 89, 44-49, DOI link, preprint (PDF).

  37. Kostal L, Lansky P (2006) Classification of stationary neuronal activity according to its information rate, Network: Computation in Neural Systems, 17, 193-210, DOI link, preprint (PDF).

  38. Kostal L, Lansky P (2006) Similarity of interspike interval distributions and information gain in a stationary neuronal firing, Biological Cybernetics, 94, 157-167, DOI link, preprint (PDF).

  39. Duchamp-Viret P, Chaput MA, Kostal L, Lansky P, Rospars J-P (2005) Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals, Journal of Neurobiology (Developmental Neurobiology), 65, 97-114, DOI link.

Publications in books and peer-reviewed proceedings, editorials

  1. Christodoulou C, Kostal L, Sacerdote L (2020) Editorial, Special issue of BioSystems on Selected papers presented at the Thirteenth International Workshop on Neural Coding, Torino, Italy, 2018, BioSystems, 187, 104049, DOI link.

  2. Kostal L, Sacerdote L, Tamborrino M (2019) Special Issue: Neural Coding 2018, Mathematical Biosciences and Engineering, 16, 8214-8216, DOI link.

  3. Christodoulou C, Kostal L, Buschges A (2017) Editorial, Special issue of BioSystems on Selected papers presented at the Twelveth International Workshop on Neural Coding, Cologne, Germany, 2016, BioSystems, 161, 1-2, DOI link.

  4. Kostal L, Lansky P, Pokora O (2012), How regular is neuronal activity?, in: ESANN 2012: The 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, pp. 495-500, full text (PDF).

  5. Kostal L, Lansky P, Rospars J-P (2008) The Adaptation of the Moth Pheromone Receptor Neuron to its Natural Stimulus, in: AIP Conference Proceedings, Vol. 1028, Collective Dynamics: Topics on Competition and Cooperation in the Biosciences: A Selection of Papers in the Proceedings of the BIOCOMP2007 International Conference (eds. Ricciardi LM, Buonocore A, Pirozzi E), pp. 147-161, AIP, Melville, New York, DOI link.

[Back to Top]

Organization of workshops and conferences, committee memberships

Editorial duties

[Back to Top]

Invited talks

[Back to Top]


[Back to Top]

Paintings and sketches








Ink/Watercolor 2

Ink/Watercolor 1



Near Sembera

Near Kvilda



Sadska (from Poricany)








Sembera in Poricany










Sembera in Poricany



[Back to Top]