Publications

(2025). Estimation of firing rate from instantaneous interspike intervals. Neurosci. Res., 215, 27-36.

PDF Cite DOI

(2024). Stimulus duration encoding occurs early in the moth olfactory pathway. Commun. Biol., 7, 1252.

PDF Cite DOI

(2023). Estimation of the instantaneous spike train variability. Chaos Solit. Fractals, 177, 114280.

PDF Cite DOI bioRxiv

(2021). Variability and Randomness of the Instantaneous Firing Rate. Front. Comput. Neurosci., 15, 620410.

PDF Cite DOI

(2020). Fano factor: a potentially useful information. Front. Comput. Neurosci., 14, 569049.

PDF Cite DOI

(2020). An optimal Gauss-Markov approximation for a process with stochastic drift and applications. Stoch. Proc. Appl., 130, 6481-6514.

PDF Cite DOI arXiv

(2019). The effect of inhibition on rate code efficiency indicators. PLoS Comput. Biol., 15, e1007545.

PDF Cite DOI

(2019). Critical size of neural population for reliable information transmission. Phys. Rev. E (Rapid Commun.), 100, 050401(R).

PDF Cite DOI Supplement

(2019). Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in moth. J. R. Soc. Interface, 16, 20190246.

PDF Cite DOI

(2018). Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations. PLoS Comput. Biol., 14, e1006586.

PDF Cite DOI

(2017). Entropy Factor for Randomness Quantification in Neuronal Data. Neural Netw., 95, 57-65.

PDF Cite DOI

(2017). Accuracy of rate coding: When shorter time window and higher spontaneous activity help. Phys. Rev. E, 95, 022310.

PDF Cite DOI

(2016). Presynaptic spontaneous activity enhances the accuracy of latency coding. Neural Comput., 28, 2162-2180.

PDF Cite DOI

(2016). Efficient information transfer by Poisson neurons. Math. Biosci. Eng., 13, 509-520.

PDF Cite DOI

(2016). Coding accuracy on the psychophysical scale. Sci. Rep., 6, 23810.

PDF Cite DOI

(2016). Stimulus reference frame and neural coding precision. J. Math. Psychol., 71, 22-27.

PDF Cite DOI

(2015). Performance breakdown in optimal stimulus decoding. J. Neural Eng., 12, 036012.

PDF Cite DOI

(2015). Coding accuracy is not fully determined by the neuronal model. Neural Comput., 27, 1051-1057.

PDF Cite DOI

(2013). Metabolic cost of neuronal information in an empirical stimulus-response model. Biol. Cybern., 107, 355-365.

PDF Cite DOI

(2013). Measures of statistical dispersion based on Shannon and Fisher information concepts. Inform. Sciences, 235, 214-223.

PDF Cite DOI

(2012). How regular is neuronal activity?. ESANN 2012: The 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, pp. 495–500.

PDF Cite

(2011). Variability measures of positive random variables. PLoS ONE, 6, e21998.

PDF Cite DOI Supplement

(2010). Information transfer with small-amplitude signals. Phys. Rev. E (Rapid Commun.), 81, 050901(R).

PDF Cite DOI arXiv

(2010). Neuronal jitter: can we measure the spike timing dispersion differently?. Chin. J. Physiol., 53, 454-464.

PDF Cite DOI

(2008). Randomness of spontaneous activity and information transfer in neurons. Physiol. Res., 57, S133-S138.

PDF Cite DOI

(2008). Efficient olfactory coding in the pheromone receptor neuron of a moth. PLoS Comput. Biol., 4, e1000053.

PDF Cite DOI

(2008). The Adaptation of the Moth Pheromone Receptor Neuron to its Natural Stimulus. AIP Conference Proceedings, Collective Dynamics: Topics on Competition and Cooperation in the Biosciences: A Selection of Papers in the Proceedings of the BIOCOMP2007 International Conference, AIP, Melville, New York, pp. 147-161.

PDF Cite DOI

(2007). Review: neuronal coding and spiking randomness. Eur. J. Neurosci., 26, 2693-2701.

PDF Cite DOI

(2007). Randomness and variability of the neuronal activity described by the Ornstein-Uhlenbeck model. Netw. Comput. Neural Syst., 17, 193-210.

PDF Cite DOI

(2007). Variability and randomness in stationary neuronal activity. BioSystems, 89, 44-49.

PDF Cite DOI

(2007). Encoding of pheromone intensity by dynamic activation of pheromone receptors. Neurocomputing, 70, 1759-1763.

PDF Cite DOI

(2006). Classification of stationary neuronal activity according to its information rate. Netw. Comput. Neural Syst., 17, 193-210.

PDF Cite DOI

(2005). Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals. J. Neurobiol., 65, 97-114.

Cite DOI